
Chapter 5

Topology

In this chapter, all linear spaces and flat spaces under consideration are
assumed to be finite-dimensional except when a statement to the contrary
is made.

51 Cells and Norms

We assume that a flat space E with translation space V is given. Given any
two distinct points x, y ∈ E , we define the open segment joining x and y to
be the set of all flat combinations of (x, y) with strictly positive coefficients
and denote it by

]x, y [ :=
{

λx+ µy | λ, µ ∈ P
×, λ+ µ = 1

}

. (51.1)

If s, t ∈ R and s < t, the notation (51.1) is consistent with the notation
]x, t [ := {r ∈ R | s < r < t} (see (08.16)). If [x, y] is the segment joining x
and y according to the definition (37.1), then

]x, y [ = [x, y]\ {x, y} . (51.2)

The point 1
2x + 1

2y ∈ ]x, y [ is called the midpoint not only of the pair
(x, y), but also of the segments ]x, y [ and [x, y].

Definition 1: A non-empty subset C of E is called a cell centered at
q ∈ E if C is convex and if every line through q intersects C in an open
segment whose midpoint is q. A cell in V centered at 0 ∈ V is called a
norming cell of V.

The following facts are immediate consequences of the definition.
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Proposition 1: Let B be a norming cell; then −B = B and λB + µB =
(λ+ µ)B for all λ, µ ∈ P, also, if t ∈ R

×, then tB is again a norming cell.
Proposition 2: The intersection of a non-empty finite collection of

norming cells is again a norming cell.
Defition 2: The closure of a norming cell B is defined to be

B :=
⋂

{

tB | t ∈ 1 + P
×
}

. (51.3)

It is clear that B includes B and, being the intersection of a collection of
convex setrs, is convex (see Prop. 1 of Sect. 3.7).

The following results are immediate from the definitions.

Proposition 3: A non-empty subset B of V is a norming cell if and
only if it is convex and for all u ∈ V× there is an r ∈ P

× such that

B ∩ Ru = (] − r, r [ )u = ] − ru, ru [ . (51.4)

If B is a norming cell and if (51.4) holds then

B ∩ Ru = ([−r, r])u = [ru, ru] . (51.5)

Proposition 4: If B is a norming cell and r ∈ [0, 1 [ then

B =
⋃

t∈[r,1 [

tB =
⋃

t∈[r,1 [

tB (51.6)

and

B :=
⋂

t∈1+P×

tB =
⋂

t∈1+P×

tB. (51.7)

Definition 3: A function ν : V → P is called a norm on V if

(N1) ν(sv) = |s| ν(v) for all s ∈ R, v ∈ V,
(N2) ν(u + v) ≤ ν(u) + ν(v) for all u,v ∈ V,
(N3) ν(v) = 0 =⇒ v = 0.

The term “norming cell” is justified by the following result.

Proposition 5: If ν is a norm on V, then

Ce(ν) := ν<([0, 1 [) = {v ∈ V | ν(v) < 1} (51.8)

is a norming cell. Its closure is
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Ce(ν) := Ce(ν) = ν<([0, 1]) = {v ∈ V | ν(v) ≤ 1} , (51.9)

and for each u ∈ V× we have

{s ∈ R | su ∈ Ce(ν)} = ] − 1

ν(u)
,

1

ν(u)
[ (51.10)

and

{

s ∈ R | su ∈ Ce(ν)
}

=

[

− 1

ν(u)
,

1

ν(u)

]

. (51.11)

Conversely, if B is a norming cell in V, then {t ∈ P | v ∈ tB} 6= ∅ for
every v ∈ V and noB : V → P, defined by

noB(v) := inf{t ∈ P | v ∈ tB}, (51.12)

is a norm on V.

We have noCeν
= ν and Ce(noB) = B.

Proof: Assume that ν is a norm on V. Let u,v ∈ Ce(ν) be given, so
that ν(u) < 1, ν(v) < 1. Given w ∈ [u,v], we have w = λu + µv for some
λ, µ ∈ P such that λ + µ = 1 (see (37.1)). Hence, by (N1) and (N2), we
obtain

ν(w) ≤ ν(λu) + ν(µv) = λν(u) + λν(v) < λ+ µ = 1,

which shows that w ∈ Ce(ν). Since u,v ∈ Ce(ν) and w ∈ [u,v] were
arbitrary, it follows that Ce(ν) is convex. Now let u ∈ V× be given. Then
ν(u) 6= 0 by (N3) and hence, by (N1), we have

Ce(ν) ∩ Ru = {su | s ∈ R, ν(su) < 1} = {su | s ∈ R, |s| ν(u) < 1}

=
{

su | s ∈ R, |s| < 1
ν(u)

}

= ] − 1
ν(u) ,

1
ν(u) [ u.

By Prop. 3, it follows that Ce(ν) is a norming cell and that (51.10) holds.

Let v ∈ V be given. By the definition (51.3) we have v ∈ Ce(ν) if and
only if v ∈ tCe(ν) for all t ∈ 1 + P

×. Now, given t ∈ 1 + P
×, we have

v ∈ tCe(ν) ⇐⇒ 1
t
v ∈ Ce(ν) ⇐⇒ ν

(

1
t
v
)

< 1

⇐⇒ 1
t
ν(v) < 1 ⇐⇒ ν(v) < t.
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Since ν(v) < t holds for all t ∈ 1+P
× if and only if ν(v) ≤ 1, it follows that

v ∈ Ce(ν) if and only if ν(v) ≤ 1, which proves (51.9).
Let u ∈ V× be given. By (N3), l we have ν(u) 6= 0 and hence, by (51.9),

Ce(ν) ∩ Ru = {su | s ∈ R, ν(su) ≤ 1}

= {su | s ∈ R, |s|ν(u) ≤ 1}

=
{

su | s ∈ R, |s| ≤ 1
ν(u)

}

=
[

− 1
ν(u) ,

1
ν(u)

]

u,

which proves (51.11).
Assume that B is a norming cell. Let v ∈ V be given. If v = 0, then v

∈ tB for all t ∈ P. Hence {t ∈ P | v ∈ tB} = P, and (51.12) gives noB(v) = 0.
Assume, then, that v 6= 0 and let r ∈ P

× be determined according to
Prop. 3. By (51.4) we then have, for all s ∈ P

×, sv ∈ B ⇔ s < r and
hence, for all t ∈ P

×, v ∈ tB ⇔ 1
t
< r ⇔ t > 1

r
. Therefore we have

{t ∈ P | v ∈ tB} = 1
r

+ P
× 6= ∅, and (51.12) gives noB(v) = 1

r
6= 0. We

conclude that ν := noB is meaningful and satisfies (N3).
Let s ∈ R

× and v ∈ V be given. Since B = −B by Prop. 1, we have
sB = |s|B and hence, for all t ∈ P,

v ∈ tB ⇐⇒ sv ∈ |s|tB.
It follows, by (51.12), that

ν(sv) = inf{|s|t | v ∈ tB} = |s|ν(v)

and hence that ν satisfies (N1).
Now let u,v ∈ V be given. Given λ ∈ ν(u) + P

× and µ ∈ ν(v) + P
×, we

have, by (51.12), u ∈ λB and v ∈ µB. Using Prop. 1, it follows that u + v
∈ λB + µB = (λ+ µ)B and hence, by (51.12) again, that ν(u + v) ≤ λ+ µ.
Since λ ∈ ν(u) + P

× and µ ∈ ν(v) + P
× were arbitrary, it follows that

ν(u + v) ≤ ν(u) + ν(v), i.e., that ν satisfies (N2).
The “subaddivity law” (N2) extends, of course, to sums of arbitrary finite

families (see Sect. 07): If ν is a norm on V and (ui | i ∈ I) a finite family in
V, then

ν

(

∑

i∈I

ui

)

≤
∑

i∈I

ν (ui) . (51.13)
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The following results are immediate from Def. 3 and Prop. 5.

Proposition 6: If ν is a norm on V and r ∈ P
×, then rν (defined by

(rν)(v) = r(ν(v)) for all v ∈ V) is again a norm on V and Ce(rν) = 1
r
Ce(ν).

If B is a norming cell in V and t ∈ R
×, then no(tB) = 1

|t|noB.

It is clear that a subset C of E is a cell centered at q ∈ E if and only if
C − q is a norming cell. If B is a norming cell, q ∈ E , and σ ∈ P

×, then
q + σB is a cell centered at q.

Definition 4: If B is a norming cell of V, then every cell of the form
q+σB, with a ∈ E , σ ∈ P

×, is called a cell modelled on B of scale σ. The
closure of a cell of this form is defined to be q + σB, where B is defined by
Def. 2.

If ν is a norm on V, q ∈ E , and σ ∈ P
×, then the cell

q + σCe(ν) = {x ∈ E | ν(x− q) < σ} , (51.14)

modelled on Ce(ν), is called the ν-cell of scale σ centered at q.

In view of (51.9), the closure of the cell (51.14) is given by

q + σCe(ν) = {x ∈ E | ν(x− q) ≤ σ}. (51.15)

Remark: If dim E = dimV = 0 then E and V are singletons, the only
cell in E is E itself and the only norming cell is V. The corresponding norm
is the constant 0. The conditions of Def. 1 are satisfied in this case because
E and V include no lines at all. The express requirement that a cell be
non-empty is needed only for this case. If dim E = dimV > 0, then E and V
are never cells.

In a few of the formulas below we must tacitly assume that dim E =
dimV > 0, becase the empty family is the only basis of V where dimV = 0.
All the results of this chapter become trivial when dim E = dimV = 0.
In some formulas, such as (52.1) and (52.4), one must remember that the
supremum of the empty set, when regarded as a subset of P or P, is 0.

Examples:

(A) Boxes. Let b := (bi | i ∈ I) be a basis of V and let
b∗ := (b∗

i | i ∈ I) be its dual basis. The norming box determinged
by b is defined to be
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Box(b) =
⋂

i∈I
(b∗

i )
<( ] − 1, 1 [)

= {v ∈ V| |b∗
iv| < 1 for all i ∈ I}

= (lncb)>

(

] − 1, 1 [ I
)

=

{

∑

i∈I

λibi|λ ∈ R
I , |λi| < 1 for all i ∈ I

}

.

(The case when dimV = 2, I = {1, 2} is illustrated in Figure 1.) The closure
of Box(b) is

Box(b) =

{

∑

i∈I

λibi|λ ∈ R
I , |λi| ≤ 1 for all i ∈ I

}

The norm corresponding to Box(b) is given by

noBox(b)(v) = max{|b∗
iv| | i ∈ I} (51.16)

A box in E is defined to be a cell modelled on a norming box, i.e., a set
of the form

q + σBox(b) = {x ∈ E||b∗
i (x− q)| < σ for all i ∈ I} (51.17)

with q = E , σ ∈ P
×.

(B) Diamonds. Let b be a basis of V, with dual b∗, as in example (A).
The norming diamond determined by b is defined to be
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Dmd(b) :=

(

∑

i∈I

|b∗
i |
)<

( ] − 1, 1 [)

=

{

v ∈ V|∑
i∈I

|b∗
iv| < 1

}

=

{

∑

i∈I

λibi|λ ∈ R
I ,
∑

i∈I

|λi| < 1

}

.

(The case when dimV = 2, I = {1, 2} is illustrated in Figure 2.) The closure
of Dmd(b) is

Dmd(b) =

{

∑

i∈I

λibi|λ ∈ R
I ,
∑

i∈I

|λi| ≤ 1

}

.

The norm corresponding to Dmd(b) is given by

noDmd(b)(v) =
∑

i∈I

|b∗
iv| . (51.18)

A Diamond in E is defined to be a cell modelled on a norming diamond,
i.e., a set of the form

q + ρDmd(b) =

{

x ∈ E|∑
i∈I

|b∗
i (x− q)| < ρ

}

. (51.19)

(C) Balls. Assume that E is a genuine Euclidean space, so that V
has the structure of a genuine inner product space. Then the magnitude-
function | · | : V → P (defined by |v| :=

√
v · v for all v ∈ V) is a norm.

The corresponding norming cell is the unit ball UblV defined by (42.7). Its
closure in the sense of Def. 2 is the closed unit ball UblV defined by (42.8).
A cell modelled on UblV the sense of Def. 4 is just a ball in E as defined by
(46.6) and its closure is the closed ball defined by (46.7). Also, a | · |-cell of
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scale ρ centered at q in the sense of Def. 4 is just a ball of radius ρ centered
at q.

The proof of the following result is based on the Halfspace-Inclusion
Theorem of Sect. 38.

Proposition 7: Let B be a norming cell and U a one-dimensional sub-
space of V. Then there is a linear form λ ∈ V∗ such that

λ>(B) = λ>(B ∩ U) = ] − 1, 1 [ . (51.20)

Proof: By the definition of a cell, there is a u ∈ U× such that
B ∩ U = ] − u,u [ and hence (B + u) ∩ U = ]0, 2u [ . Since B + u is
convex and 0 /∈ B + u, we can apply the Halfspace-Inclusion Theorem to
obtain a γ ∈ V× such that γ>(B+u) ⊂ P. Since γ 6= 0, there is a v ∈ (V∗)×,
such that γv ∈ P

×. In view of Prop. 3 there is a t ∈ P
× such that −tv ∈ B

and hence −tv +u ∈ B +u. Thus we have 0 ≤ γ(−tv +u) = −t(γv) + γu,
which implies γu > 0. It is easily verified, using (51.4), that λ := 1

(γu)γ

has the desired property (51.20).

Proposition 8: For every norming cell B in V and every λ ∈ V∗, the
image λ>(B) of B under λ is a bounded subset of R.

Proof: Put

A :=

{

λ ∈ V∗|λ>(B) is bounded

}

.

Let u ∈ V× be given. Applying Prop. 7 to the case when U := Ru, we
see that there is a λ ∈ A such that λu 6= 0. Since u ∈ V× was arbi-
trary, we conclude that A⊥ = {0}. Hence, by (22.5), we conclude that
A = (A⊥)⊥ = {0}⊥ = V∗.

Norm-Equivalaence Theorem: for all norms ν and ν ′ on V there are
h, k ∈ P

× it such that hν ≤ ν ′ ≤ kν (value-wise).

Proof: We choose a basis b := (bi | i ∈ I) of V, with dual
b∗:=(b∗

i | i ∈ I).

Let v ∈ V be given. We then have v =
∑

(λibi | i ∈ I) with
λ := (b∗

iv | i ∈ I) ∈ R
I . Using the properties of (N1) and (51.13) for

the norm ν ′, we obtain

ν ′(v) ≤
∑

i∈I

|λi|ν ′(bi) ≤
(

max
i∈I

|λi|
)

∑

i∈I

ν ′(bi).

In view of (51.16), and since v ∈ V was arbitrary, we obtain
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ν ′ ≤ s noBox(b), (51.21)

where s :=
∑

(ν ′(bi) | i ∈ I) ∈ P
×.

On the other hand, by Prop. 8, (b∗
i )>(Ce(ν)) is a bounded non-empty

subset of R for each i ∈ I and hence

t := max
i∈I

sup{|b∗
iu||u ∈ Ce(ν)}.

Now let v ∈ V× be given. If we put u := v

2ν(v) , then ν(u) = 1
2 < 1 and

hence u ∈ Ce(ν). It follows that

noBox(b) ≤ 2tν. (51.22)

Combining (51.21) and (51.22), we find that ν ′ ≤ kν with k := 2st ∈ P
×.

Interchanging the roles of ν and ν ′ and replacing 1
k

by h, we see that also
hν ≤ ν ′ for some h ∈ P

×.
Using Prop. 5, we immediately obtain the following corollaries.
Corollary 1: If B and B′ are norming cells in V, there are ρ, σ ∈ P

×

such that

ρB ⊂ B′ ⊂ σB.
Corollary 2: Let ν and ν ′ be norms on V and q be a point in E . Then

every ν-cell centered at q includes a ν ′-cell centered at q and is included in
a ν-cell centered at q.

Let E1 and E2 be flat spaces with translation spaces V1 and V2. Recall
that E1 ×E2 has the structure of a flat space with translation space V1 ×V2

(see end of Sect. 32). It is easily seen that if B1 and B2 are norming cells
in V1 and V2, respectively, then B1 × B2 is a norming cell in V1 × V2. If
ν1 := noB1 , ν2 := noB2 and ν := noB1×B2 , then

ν((v1,v2)) = max{ν1(v1), ν2(v2)} for all (v1,v2) ∈ B1 × B2. (51.23)

Let F be a flat in E . Since F has the structure of a flat space, it makes
sense to speak of cells in F . It is immediate that if C is a cell in E centered
at a point q ∈ F , then C ∩ F is a cell in F centered at q. Conversely, if C′

is a cell in F centered at q ∈ F , we can construct a cell C in E such that
C′ = C ∩ F as follows: We choose a supplement W of the direction space of
F and a norming cell B of W . Then C := C′ + B is easily seen to be a cell
in E such that C′ = C ∩ F .
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Notes 51

(1) The term “ball” is often used for our “cell” and “unit ball” for our “norming cell”.
I prefer to limit the use of “ball” and “unit ball” to the special case discussed in
Example (C).

(2) The notation ‖u‖ is commonly used for the value of a norm at u. This notation
makes it hard to deal with all possible norms, as we do here. I like to reserve the
use of double bars for operator-norms as defined in Sect. 5.2. See also Note 2 to
Sect. 42.

(3) What we call a “box” is often called a “parallelotope”, a “parallelepiped” (if the
dimension is 3), or a “parallelogram” (if the dimension is 2).

(4) What we call a “diamond” is sometimes called a “cross-polytope”.

(5) When V := R
I for some finite set I and when b := δI , the standard basis defined

by (16.2), then the box-norm and diamond-norm are often called “l∞-norm” and
“l1-norm”, respectively. However, these latter terms are more often used in an
analogous but infinite-dimensional situation.

(6) No treatment of the topology of finite-dimensional spaces that I am aware of deals
with the Norm-Equivalence Theorem in the way I do here. In the conventional
treatments a fixed norm (often the magnitude norm on R

n) is assumed to be pre-
scribed, and the definitions of the topological concepts all depend, at first view,
on that norm. On occasion the Norm-Equivalence Theorem is proved as an af-
terthought, and the proof is then based on theorems involving compactness. The
definitions of the topological concepts I gave in this chapter do not depend, even
at first view, on the choice of any particular norm. I need the Norm-Equivalence
Theorem long before I can define compactness. My proof is based on the Half-Space
Inclusion Theorem, which does not involve topology at all.

52 Bounded Sets, Operator Norms

Definition 1: A subset S of a flat space E is said to be bounded if for
every a ∈ Flf(E), the image a>(S) is a bounded subset of R (see Sect. 36).

If R is regarded as a flat space, this definition is clearly consistent with
the usual definition of boundedness of subsets of R (see Sect. 08).

It is evident that every subset of a bounded set is bounded, that finite
sets are bounded, and that the union of a finite collection of bounded sets
is again bounded.

The following result is immediate from the definition.
Proposition 1: The image of a bounded set under a flat mapping is

again bounded. If E is a flat space with translation space V and if v ∈ V and
x ∈ E , then a subset S of E is bounded if and only if S + v is bounded and
if and only if S − x is a bounded subset of V.

We note that the convex hull of a non-empty bounded subset S of R is
included in the interval [inf S, supS] and hence is itself bounded. Using this
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fact, Def. 1, and the fact that flat functions preserve convex hulls (see Prop.
5 of Sect. 37) we obtain the following result.

Proposition 2: The convex hull of every bounded subset of E is again
bounded.

Using Prop. 8 of Sect. 51 and Prop. 1 above, one immediately obtains
the following result.

Proposition 3: Every cell in E is bounded.
Cell-Inclusion Theorem: Let a point q ∈ E and a norming cell B in

V be given. A subset S of E is bounded if and only if it is included in a cell
modelled on B and centered at q.

Proof: The “if” part follows from Prop. 3. Assume, then, that S is a
bounded subset of E . By Prop. 1, S − q is then a bounded subset of V, so
that λ>(S − q) is a bounded subset of R for all λ ∈ V∗. Choose a basis
b := (bi | i ∈ I) of V with dual b∗. The sets v ∈ S − q are bounded for all
i ∈ I. Hence we may, and do, choose h ∈ P

× such that h > max(|b∗
iv| |i ∈ I)

for all v ∈ S − q. In view of (51.16), this means that

noBox(b)(v) < h for all v ∈ S − q

and hence

S ⊂ q + h Box(b).

Therefore, S is included in a cell modelled on Box (b) and centered at q.
By Cor. 1 of the Norm-Equivalence Theorem of Sect. 51, S is also included
in a cell modelled on B and centered at q.

Corollary 1: Let q ∈ E and a norm ν on V be given. A subset S of E is
bounded if and only if ν>(S − q) is a bounded subset of P.

The ν-diameter of a subset S of E is defined to be

diamν(S) := sup
x,y∈S

ν(x− y) ∈ P. (52.1)

Corollary 2: Let ν be a norm on V. A subset S of E is bounded if and
only if it has finite ν-diameter.

Let V and V ′ be linear spaces and let ν and ν ′ be norms on V and V ′,
respectively. If L ∈ Lin(V,V ′) then, by Prop. 3 and Prop. 1, L>(Ce(ν)) is a
bounded subset of V ′. Hence, by Corollary 1 of the Cell-Inclusion Theorem,
ν ′>(L>(Ce(ν))) is a bounded subset of P and therefore has a supremum in
P.

Definition 2: If V,V ′ are linear spaces, ν, ν ′ respective norms on V,V ′,
and L ∈ Lin(V,V ′), then
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‖L‖ν,ν′ := sup ν ′>(L>(Ce(ν))) ∈ P (52.2)

is called the operator norm of L relative to ν, ν ′.

The following fact, easily verified, justifies the use of the term “norm”
(see Def. 3 of Sect. 51).

Propositon 4: The function (L 7→ ‖L‖ν,ν′) : Lin(V,V ′) → P is a norm
on Lin(V,V ′).

Alternative descriptions of the operator norm are as follows.

Proposition 5: We have

‖L‖ν,ν′ = sup ν ′>(L>(Ce(ν))) (52.3)

= sup

{

ν ′(Lv)

ν(v)
| v ∈ V×

}

(52.4)

= inf{σ ∈ P | L>(Ce(ν)) ⊂ σCe(ν ′)} (52.5)

= inf{σ ∈ P | ν ′ ◦ L ≤ σν}, (52.6)

so that

ν ′(Lv) ≤ ‖L‖ν,ν′ν(v) for all v ∈ V. (52.7)

Repeated applications of (52.7) gives the following result.

Propositon 6: If V,V ′,V ′′ are linear spaces, ν, ν ′, ν ′′ respective norms,
L ∈ Lin(V,V ′) and M ∈ Lin(V,V ′′), then

‖ML‖ν,ν′′ ≤ ‖M‖ν′,ν′′‖L‖ν,ν′ . (52.8)

If V is a linear space with norm ν, we write

‖L‖ν := ‖L‖ν,ν when L ∈ Lin(V). (52.9)

If V is non-zero, we have

‖1V‖ν = 1 (52.10)

no matter what ν is.
If V,V ′ are non-zero linear spaces with respective norms ν, ν ′ and if

L ∈ Lis(V,V ′), then

(

‖L‖ν,ν′
)−1 ≤ ‖L−1‖ν′,ν , (52.11)
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as is clear from (52.10) and Prop. 6.

Let V be a linear space and V∗ its dual. If ν is a norm on V, we define
the dual norm ν∗ on V∗ so that ν∗(λ) is the operator norm of λ ∈ V∗ :=
Lin(V,R) relative to ν and the absolute-value-norm on R. Thus, by Prop.
5, we have

ν∗(λ) = sup{|λv| | v ∈ Ce(ν)} (52.12)

= sup{|λv| | v ∈ Ce(ν)}. (52.13)

= sup

{ |λv|
ν(v)

| v ∈ V×

}

. (52.14)

The dual of the dual of a norm ν on V is a norm on V∗∗ ≃ V. The
following result states that this dual of the dual norm coincides with the
original norm ν.

Norm-Duality Theorem: If ν is a norm on the linear space V, then
ν = ν∗∗ when V is identified with V∗∗. Specifically, we have

ν(v) = sup{|λv||λ ∈ Ce(ν∗)} for all v ∈ V. (52.15)

Proof: It follows from (52.14) that

|λv| ≤ ν∗(λ)ν(v) for all v ∈ V,λ ∈ V∗. (52.16)

Now let v ∈ V be given. By (52.16) we have

|λv|
ν∗(λ)

≤ ν(v) for all λ ∈ (V∗)×.

Hence, using (52.14) with λ replaced by v,V by V∗, and ν by ν∗ we get
ν∗∗(v) ≤ ν(v).

If v = 0 we have ν(v) = 0 = ν∗∗(v). If v ∈ V×, we apply Prop. 7
of Sect. 51 to B := Ce(ν) and U := Rv to obtain a λ ∈ V∗ such that
λv = ν(v) and |λu| < 1 for all u ∈ Ce(ν). In view of (52.12), we have
ν∗(λ) ≤ 1 and hence λ ∈ Ce(ν∗). Thus, using (52.13) with λ replaced by v,
V by V∗, and ν by ν∗, we get ν∗∗(v) ≥ λv = ν(v) and hence ν∗∗(v) = ν(v).
Since v ∈ V was arbitrary, the conclusion follows.

Proposition 7: If V,V ′ are linear spaces with respective norms ν, ν ′ and
if L ∈ Lin(V,V ′), then

‖L⊤‖ν′∗,ν∗ = ‖L‖ν,ν′ . (52.17)
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Proof: Let µ ∈ V ′∗ be given. Applying Prop. 6 to the case when
V ′′ := R, with absolute value as norm, and when M is replaced by µ, we get

ν∗(L⊤µ) = ν∗(µL) ≤ ‖L‖ν,ν′ν ′∗(µ).

Using (52.6) with L replaced by L⊤ we get ‖L⊤‖ν′∗,ν∗ ≤ ‖L‖ν,ν′ . Apply-
ing this inequality to the case when L is replaced by L⊤ and ν, ν ′ by ν ′∗, ν∗,
we also get

‖L⊤⊤‖ν∗∗,ν′∗∗ ≤ ‖L⊤‖ν′∗,ν∗ .
Since L⊤⊤ = L and since ν = ν∗∗ and ν ′ = ν ′∗∗ by Prop. 7, we obtain
‖L‖ν,ν′ ≤ ‖L⊤‖ν′∗,ν∗ and hence (52.17)

Examples:

1. The dual of a box-norm is easily seen to be a diamond-norm and vice-
versa. Specifically, if b is a basis of V and b∗ its dual basis, then

(

noBox(b)

)∗
= noDmd(b∗). (52.18)

(See Problem 6.)

2. If V has the structure of a genuine inner-product space, one can con-
sider the magnitude norm | · | on V. The dual of | · | is a norm on V∗.
Since V is identified with V∗ by means of the inner product this dual
norm can be viewed as a new norm on V. Using the Inner-Product In-
equality of Sect. 42, one easily proves that the dual of the magnitude
is the magnitude itself.

3. Let V and V ′ be genuine inner-product spaces. The operator norm on
Lin(V,V ′) relative to the magnitudes in V and V ′ is denoted simply by
‖ · ‖, so that

‖L‖ := sup

{ |Lv|
|v| | v ∈ V×

}

. (52.19)

On the other hand, the space Lin(V,V ′) has a natural genuine inner
product, defined by (44.5), and an associated magnitude-norm | · |,
defined by (44.13). This magnitude-norm | · | is distinct from the
operator norm |·| unless V or V ′ have dimension one or zero. We will
see in Sect. 8.4 that
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|L| ≥ ‖L‖ ≥ 1√
n
|L| for all L ∈ Lin(V,V ′) (52.20)

when n := dimV > 0.

Notes 52

(1) In the conventional treatments, boundedness is defined by the condition of the
Cell-Inclusion Theorem. The concept obtained in this way is, at first view, a
“boundedness relative to a norm (or norming cell) and a point”. The boundedness
is equivalent to the intrinsic concept of boundedness used here. This intrinsic
concept corresponds to what is called “weak boundedness” in infinite-dimensional
situations, where the two concepts are not equivalent.

53 Neighborhoods, Open and Closed Sets

We assume that a flat space E with translation space V is given.
Definition 1: A subset of E is said to be a neighborhood (in E)

of a point x ∈ E if it includes a cell centered at x. The collection of all
neighborhoods in E of x is denoted by Nhdx(E).

Of particular importance is the set Nhd0(V) of all neighborhoods in V
of 0. It is clear that

Nhdx(E) = {x+ N | N ∈ Nhd0(V)}. (53.1)

The following results follow from Props.1, 2 of Sect.51.
Proposition 1: If N ∈ Nhd0(V) then −N ∈ Nhd0(V) and tN ∈

Nhd0(V) for all t ∈ R
×.

Proposition 2: Every subset of E that includes a neighborhood of x is
a neighborhood of x. The intersection of a finite collection of neighborhoods
of x is a neighborhood of x.

Using Cor.1 and Cor.2 of the Norm-Equivalence Theorem of Sect.51, one
immediately obtains the following result.

Proposition 3: Let B be any norming cell in V. A subset of E is a
neighborhood of a point in E if and only if it includes a cell modelled on B
and centered at that point.

Let ν be any norm on V. A subset of E is a neighborhood of a point in
E if and only if it includes a ν-cell centered at that point.

Definition 2: Let S be a subset of E. We say that the point x ∈ E is
interior to S (in E) if S ∈ Nhdx(E). We say that x ∈ E is close to S (in E)
if S meets every neighborhood of x, i.e. if N ∩ S 6= ∅ for all N ∈ Nhdx(E).
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The interior and the closure of S are defined to be the set of all points
interior to S and close to S, respectively. They are denoted by

IntS := {x ∈ E | S ∈ Nhdx(E)}, (53.2)

CloS := {x ∈ E | N ∩ S 6= ∅ for all N ∈ Nhdx(E)}. (53.3)

We will see later (Prop.12) that the definition of “closure” just given
does not clash with the one given in Defs.2 and 4 of Sect.51.

It is evident that
IntS ⊂ S ⊂ CloS. (53.4)

Also, the operations Int and Clo are isotone with respect to inclusion, i.e.
we have

S ⊂ T =⇒ IntS ⊂ Int T and CloS ⊂ Clo T (53.5)

for all subsets S and T of E .
The interior and closure of a set S depend, on the face of it, not only

on S but also on the flat space E . We write Int ES and Clo ES if we wish to
make this dependence explicit. We shall see at the end of this section that
the closure is, in fact, independent of what one considers to be the flat space
that includes S. More precisely, if S is included in a proper flat F in E , then
CloFS = Clo ES. In this case Int ES is necessarily empty, but Int FS need
not be.

The following are easily seen to be valid for every subset S and E :

IntS 6= ∅ =⇒ FspS = E , (53.6)

IntCloS ⊃ IntS, (53.7)

Clo IntS ⊂ CloS. (53.8)

In view of (53.1) and the definitions (53.2), (53.3) we have

Int (x+ R) = x+ IntR, Clo (x+ R) = x+ CloR (53.9)

for all x ∈ E and all subsets R of V.
Proposition 4: The complement of the closure [interior] of a set is the

interior [closure] of its complement, i.e.

E \ CloS = Int (E \ S), (53.10)

E \ IntS = Clo (E \ S) (53.11)

hold for all subsets S of E.
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Proof: Note that S ∩ N = ∅ holds for a subset N of E if and only if
N ⊂ E \ S. By the first statement of Prop.2, it follows that

(S ∩ N = ∅ for some N ∈ Nhdx(E)) ⇐⇒ E \ S ∈ Nhdx(E).

Therefore, for every x ∈ E , we have

x ∈ Int (E \ S) ⇐⇒ E \ S ∈ Nhdx(E)

⇐⇒ (S ∩ N = ∅ for some N ∈ Nhdx(E))

⇐⇒ x /∈ CloS
⇐⇒ x ∈ E \ CloS,

which proves (53.10). To obtain (53.11), we merely need to substitute E \ S
for S in (53.10) and take the complement.

The boundary of a subset S of E is defined to be

BdyS := CloS \ IntS. (53.12)

We say that S ⊂ E is open if IntS = S and closed if CloS = S. We will
see later (Prop.13) that these definitions of “open” and “boundary” do not
clash with the ones given in Sect.38. The following results are consequences
of Prop.4 and Prop.2.

Proposition 5: A subset of E is open [closed] if and only if its comple-
ment in E is closed [open].

Proposition 6: The union of any collection of open sets is open. The
intersection of any collection of closed sets is closed. The intersection of
a finite collection of open sets is open. The union of a finite collection of
closed sets is closed.

Proposition 7: If D is an open subset and G a closed subset of E, then
D \ G is open and G \ D closed.

The empty set ∅ and the whole space E are both open and closed. Let
q ∈ E . In view of (53.9), a set S is open [closed] in E if and only if S − q is
open [closed] in V.

Proposition 8: Every cell is open.

Proof: In view of Prop.5 of Sect.51, it is sufficient to show that for
every norm ν on V, the norming cell Ce(ν) is open. Let v ∈ Ce(ν). Then
0 ≤ ν(v) < 1 and hence

r := 1 − ν(v) ∈ ]0, 1].
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If u ∈ v + rCe(ν) then v − u ∈ rCe(ν) and hence ν(v − u) < r. Using the
subaddivity property (N2) of the Def.3, Sect.51, we find that

ν(u) ≤ ν(v − u) + ν(v) < r + ν(v) = 1,

i.e. that u ∈ Ce(ν). Therefore Ce(ν) includes the cell v + rCe(ν) centered
at v, which shows that Ce(ν) ∈ Nhdv(V). Since v ∈ Ce(ν) was arbitrary, it
follows that Ce(ν) is open.

Proposition 9: The interior of every set is open and its closure is
closed.

Proof: Let S be a subset of E and let x ∈ IntS, so that S ∈ Nhdx(E).
By Def.1, S includes a cell C centered at x. Since C is open by Prop.8, C and
hence S is a neighborhood of every point in C, which means that C ⊂ IntS.
It follows that IntS is a neighborhood of x. Since x ∈ IntS was arbitrary,
it follows that IntS is open.

The proof just given and (53.10) show that E \ Clo (S) = Int (E \ S) is
open. Hence, by Prop.5, CloS is closed.

It follows from Props.6 and 9 that the closure-mapping
Clo : Sub E → Sub E , which assigns to each subset of E its closure, is
nothing but the span-mapping corresponding to the (intersection-stable)
collection of all closed subsets of E (see Sect.03). Using (03.26) and Prop.4
one obtains

Clo (CloS) = CloS and Int (IntS) = IntS (53.13)

for all S ∈ Sub E . Moreover, we have

Proposition 10: The interior of a set is the largest (with respect to
inclusion) among the open sets included in it. The closure of a set is the
smallest (with respect to inclusion) among the closed sets that include it.

Applying Prop.9 and Prop.7 to (53.12), we find

Proposition 11: The boundary of every set is closed.

The following result shows that the closure of a norming cell in the sense
of Def.2 above coincides with its closure in the sense of Def.2 of Sect.51.

Proposition 12: For every norm ν on V, we have

CloCe(ν) = Ce(ν) = ν<( [ 0, 1] ) (53.14)

and

Bdy Ce(ν) = ν<({1}). (53.15)

Hence, for every norming cell B of V, we have B̄ = CloB.
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Proof: Let v ∈ Ce(ν) and N ∈ Nhdv(V) be given. By Prop.3, there is
a σ ∈ ]0, 1] such that v + σCe(ν) ⊂ N . Since −1

2v ∈ Ce(ν), it follows that
(1 − σ

2 )v = v + σ(−1
2v) ∈ N . Since 1 − σ

2 ∈ [ 0, 1[ we also have (1 − σ
2 )v ∈

Ce(ν) and hence (1− σ
2 )v ∈ N ∩Ce(ν), showing that N ∩Ce(ν) 6= ∅. Since

N ∈ Nhdv(V) was arbitrary, it follows that v ∈ CloCe(ν).
Assume, now, that v /∈ Ce(ν) and hence that ν(v) > 1. Put r := ν(v)−1.

If u ∈ v + rCe(ν) then ν(u − v) < r and hence ν(u) ≥ ν(v) − ν(v − u)
> ν(v) − r = 1, i.e. u /∈ Ce(ν). Therefore (v + rCe(ν)) ∩ Ce(ν) = ∅. Since
v + rCe(ν) ∈ Nhdv(V), this shows that v /∈ CloCe(ν).

We have proved that v ∈ Ce(ν) if and only if v ∈ CloCe(ν), which
means that (53.14) holds. (53.15) follows from (53.14) and (53.12).

The following result shows that the boundary of a half-space in the sense
of Sect.38 coincides with its boundary in the sense of (53.12) and that an
open-half-space in the sense of Sect.38 is an open set as defined above.

Proposition 13: Let a be a non-constant flat function on E. Then
the half-space a<(P) is closed, its interior is a<(P×), and its boundary is
a<({0}).

Proof: Let x ∈ a<(P×) be given. Consider the “strip”

S :=
1

a(x)
(∇a)<( ]−1, 1[ ) = {v ∈ V | |(∇a)v | < a(x)}.

Using the fact that ∇a 6= 0, one easily shows that if B is a norming cell, so
is B∩S. On the other hand, we have x+B∩S ⊂ a<(P×), which proves that
a<(P×) ∈ Nhdx(E). Since x ∈ a<(P×) was arbitrary, it follows that a<(P×)
is open. Applying this result to −a instead of a and using Prop.5, we find
that (−a)<(P×) = a<(−P

×) = E \ a<(P) is open and hence that a<(P) is
closed.

Now let x ∈ a<({0}) be given. Since ∇a 6= 0, we may choose a v ∈ V such
that (∇a)v > 0. Then the intersection of the half-space a<(P) and the line
x+Rv is x+Pv, which includes no open segment centered at x. Hence a<(P)
cannot include a cell centered at x, which implies that x /∈ Int a<(P). Since
x ∈ a<({0}) was arbitrary, we conclude that a<({0})∩ Int a<(P) = ∅. Since
a<(P×) is open and a<(P) = a<(P×) ∪ a<({0}), we see that Int a<(P) =
a<(P×) and Bdy a<(P) = a<({0}).

Let F be a flat in E and let x be a point in F . At the end of Sect.51
we saw that a subset of F is a cell in F centered at x if and only if it is the
intersection of F and a cell in E centered at x. It follows from Def.1 that
the set of all neighborhoods of x in F is given by

Nhdx(F) = {N ∩ F | N ∈ NhdxE}. (53.16)



180 CHAPTER 5. TOPOLOGY

Now let S be a subset of F . Using (53.16) and the definition (53.3) of
closure, we see that Clo F (S) = F ∩ Clo (S). On the other hand, it follows
from Props.11 and 13 that hyperplanes in E are closed. Hence, by Prop.6
above and Prop.5 of Sect.36 every flat F is closed in E . We conclude that
CloF (S) = Clo (S), as mentioned earlier.

Let E1, E2 be flat spaces with translation spaces V1,V2 with norms ν1, ν2,
respectively. Using Prop.3 and (51.23), we obtain the following result.

Proposition 14: A subset of E1 ×E2 is a neighborhood (in E1 ×E2) of a
point (x1, x2) ∈ E1 × E2 if and only if it includes the set-product of a ν1-cell
centered at x1 and a ν2-cell centered at x2.

The following result is an easy consequence of Prop.14 and the definitions
given earlier.

Proposition 15: Let S1 and S2 be subsets of E1 and E2, respectively.
Then

Clo (S1 × S2) = CloS1 × CloS2, (53.17)

Int (S1 × S2) = IntS1 × IntS2, (53.18)

Bdy (S1 × S2) = (BdyS1 × CloS2) ∪ (CloS1 × BdyS2). (53.19)

If S1 and S2 are open [closed, bounded] then S1 × S2 is an open [closed,
bounded] subset of E1 × E2.

Notes 53

(1) The term “neighborhood” is sometimes used (especially in the older literature) for
what we call “open neighborhood”.

(2) Other notations for the closure CloS of a set S are S,S−,Sc, and clS.

(3) Other notations for the interior IntS of a set S are
◦

S,S◦, and intS.

(4) The boundary Bdy S of a set is very often denoted by ∂S.

(5) A few people use the term “frontier” and the notation frS for what we call the
boundary Bdy S of a set S.

54 Topology of Convex Sets

The following two results show that the conclusion of the Half-Space-
Inclusion Theorem can be strengthened for open and for closed convex sets.

Proposition 1: Let C be a non-empty open convex subset of a flat space
E and let z ∈ E \ C. Then there is an open-half-space that includes C and
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has z on its boundary. In other words, there is an a ∈ (Flfz(E))× such that
a>(C) ⊂ P

×.

Proof: By the Half-Space Inclusion Theorem we can find a ∈ (Flfz(E))×

such that a|C ≥ 0, i.e. C ⊂ a<(P). Since C is open and Int a<(P) = a<(P×)
by Prop.13 of Sect.53, it follows from Prop.10 of Sect.53 that C ⊂ a<(P×),
i.e. a>(C) ⊂ P

×.

Proposition 2: Let C be a non-empty convex subset of a flat space E
and let z ∈ E \ Clo (C). Then there is a half-space that includes C and does
not contain z. Equivalently, there is an a ∈ Flf(E) such that a|C ≥ 0 and
a(z) = −1.

Proof: By (53.10) we have z ∈ Int (E \ C), i.e. E \ C ∈ Nhdz(E). Hence
we may choose a norming cell B such that z+B ⊂ E \C, which is equivalent
to z /∈ C−B. The set C −B = C+B is convex by Prop.4 of Sect.37 and non-
empty because both C and B are non-empty. By the Half-Space Inclusion
Theorem there is a b ∈ (Flfz(E))× such that C −B ⊂ b<(P). Since z belongs
to the closure b<(P) of b<(P×) (see Prop.13 of Sect.53), the neighborhood
z + B of z must intersect b<(P×). Hence we may, and do, choose a u ∈ B
such that z + u ∈ b<(P×), i.e. 0 < b(z + u) = b(z) + (∇b)u = (∇b)u. Since
C −u ⊂ b<(P), it follows that 0 ≤ b(x−u) = b(x)− (∇b)u for all x ∈ C and
hence (b− (∇b)u)|C ≥ 0. On the other hand, (b− (∇b)u)(z) = −(∇b)u < 0.
Hence a := ((∇b)u)−1(b− (∇b)u) has the desired properties.

Prop.2 is the key to the proof the following basic result.

Half-Space Intersection Theorem: Let S be a non-empty subset of
a flat space E. Then the closure of the convex hull of S is the intersection
of all half-spaces that include S, i.e.

CloCxhS =
⋂

{a<(P) | a ∈ Flf(E), S ⊂ a<(P)}. (54.1)

Proof: Put A := {a ∈ Flf(E) | S ⊂ a<(P)} and C :=
⋂

(a<(P) | a ∈ A),
so that S ⊂ a<(P) for all a ∈ A and hence S ⊂ C. Since a<(P) is convex
and closed (see Prop.13 of Sect.53), it follows that C is convex and closed
(see Prop.1 of Sect.37 and Prop.6 of Sect.53). Therefore, we must have
CloCxhS ⊂ C.

Now let z ∈ E \ CloCxhS be given. By Prop.2, we may choose a ∈
Flf(E) such that a ∈ A but a(z) = −1, so that z 6∈ a<(P). It follows that
z /∈ C, i.e. z ∈ E \ C. Since z ∈ E \ CloCxhS was arbitrary, it follows that
E \ Clo CxhS ⊂ E \ C, and hence C ⊂ CloCxhS.

Applying the Theorem to closed convex sets we obtain:

Corollary 1: Every closed convex set is the intersection of all half-spaces
that include it.
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Since half-spaces are convex and intersections of collections of convex
sets are convex, we have the following consequence of the Theorem.

Corollary 2: The closure of every convex set is again convex.

Corollary 3: If the subset S of E is bounded, so is CloCxhS.

Proof: The assertion is trivial when S is empty. We may assume,
therefore that S is not empty and bounded. Let b ∈ Flf(E) be given. Since
S is bounded, we have ξ := sup b>(S) < ∞ and hence S ⊂ (ξ − b)<(P). By
(54.1), it follows that CloCxhS ⊂ (ξ−b)<(P), and hence that b>(CloCxhS)
has ξ as an upper bound. Replacing b by −b in the argument above we see
that b>(CloCxhS) has also a lower bound and hence is a bounded subset of
R. Since b ∈ Flf(E) was arbitrary, CloCxhS is bounded.

Remark: Another proof of Corollary 3 is based on the Cell-Inclusion
Theorem of Sect.52: If S is bounded, then we can choose q ∈ E and a
norming cell B such that S ⊂ q+B. Since q+B is convex we have CxhS ⊂
q +B and hence CloCxhS ⊂ q + CloB. Using Prop.12 of Sect.53, it follows
that Clo CxhS ⊂ q + B̄ ⊂ q + 2B. Since q + 2B is again a cell, the Cell-
Inclusion Theorem tells us that CloCxhS is bounded.

Proposition 3: Let C be a convex set and let x ∈ Int C, y ∈ Clo C be
given such that x 6= y. Then ]x, y[⊂ Int C.

Proof: Let z ∈ ]x, y[ be given. By (51.1), this means that z = λx+ µy
for some λ, µ ∈ P

× with λ + µ = 1. Since x ∈ Int C, we have C ∈ Nhdx(E).
If we put B := C − x, it follows that B ∈ Nhd0(V) and hence, by Prop.1
of Sect.51, −λB, λ2B ∈ Nhd0(V). Since y ∈ Clo C and y − λB ∈ Nhdy(E),
we have (y − λB) ∩ C 6= ∅, and we may therefore choose w ∈ B such that
y − λw ∈ C.

Now let u ∈ B be given. Since λ2 + λµ + µ = λ(λ + µ) + µ = 1 we
can form the convex combination of (x + u, x + w, y − λw) at (λ2, λµ, µ) :
λ2(x + u) + λµ(x + w) + µ(y − λw) = z + λ2u. Since C is convex and
since x + u, x + w, y − λw ∈ C, it follows from Prop.5 of Sect.37 that
z + λ2u ∈ C. Since u ∈ B was arbitrary, we conclude that z + λ2B ⊂ C.
Since z + λ2B ∈ Nhdz(E), it follows that z ∈ Int C. Since z ∈ ]x, y[ was
arbitrary, we get the desired conclusion.

Since Int C ⊂ Clo C for every set C, Prop.3 has the following immediate
consequence.

Proposition 4: The interior of every convex set is convex.

The following result states that for convex sets with non-empty interiors
the inclusions (53.7) and (53.8) can be reversed.

Proposition 5: If C is convex and Int C 6= ∅ then

Clo Int C = Clo C, Int Clo C = Int C. (54.2)
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Proof: Since Int C 6= ∅, we may and do choose a point q ∈ Int C. Let
x ∈ Clo C be given. If x 6= q we have, by Prop.3, ]q, x[⊂ Int C. Since every
cell centered at x has a non-empty intersection with ]q, x[ and hence Int C,
we conclude that x ∈ Clo Int C. Since q ∈ Int C ⊂ Clo Int C, we see that
x ∈ Clo Int C holds for all x ∈ Clo C and hence that Clo C ⊂ Clo Int C, which
proves (54.2)1.

Now let y ∈ Int Clo C be given, so that Clo C includes a cell centered at
y. If q 6= y, this cell, and hence Clo C, must have a non-empty intersection
with y + P

×(y − q). We choose z in this intersection, so that z ∈ Clo C and
y ∈ ]q, z[. By Prop.3, we have ]q, z[ ⊂ Int C and hence y ∈ Int C. Since
q ∈ Int C, we see that y ∈ Int C holds for all y ∈ Int Clo C and hence that
IntClo C ⊂ Int C, which proves (54.2)2.

The following result states that the implication (53.6) can be reversed
for convex sets.

Proposition 6: If C is convex and not empty, then

Int C 6= ∅ ⇐⇒ Fsp C = E . (54.3)

Proof: Assume that Fsp C = E .
We choose z ∈ C. We have Lsp(C − z) = V and hence we may choose a

set basis b ∈ Sub (C − z). Put n := dim E = dimV, and

q := z +
1

2n

∑

u∈b

u. (54.4)

We claim that the cell q + 1
2nBoxb centered at q is included in C, which

implies that q ∈ Int C and hence that Int C 6= ∅.
To prove the claim, let x ∈ q + 1

2nBoxb be given, so that x = q +
1
2n

∑

(λuu | u ∈ b) for some λ ∈ ]−1, 1[b. By (54.4), this means that

x = z +
∑

u∈b

(
1 + λu

2n
)u.

Since 0 <
1 + λu

2
< 1 for all u ∈ b, and since ♯b = n, we have

σ :=
∑

u∈b

1 + λu

2n
∈ ]0, 1[.

It follows that x is the value of the convex combination mapping for {z} ∪
(z + b) at the coefficient-family which assigns (1 − σ) to z and

1 + λu

2n
to
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z + u when u ∈ b. Since C is convex and hence Cxh({z} ∪ (z + b)) ⊂ C, it
follows from Prop.5 of Sect.37 that x ∈ C. Hence the claim is proved.

Prop.6 shows that (54.2)2 holds even when Int C = ∅, because in that
case C and hence Clo C must be included in a proper flat in E . This flat and
hence Clo C has an empty interior.

55 Sequences

Let E be a flat space with translation space V. Recall that the elements of
EN

×

and EN are called sequences in E (see Sect.02). We will state most of
our definitions and results for sequences indexed on N

×, but they are easily
modified so as to apply to sequences indexed on N. The following definitions
are generalizations of ones that are familiar from real analysis (see Sect.08).

Definition 1: We say that a sequence s in E converges to a point
x ∈ E if for every neighborhood N ∈ Nhdx(E) of x there is an n ∈ N

× such
that s>(n+ N) ⊂ N .

Proposition 1: A sequence in E can converge to at most one point in
E.

Proof: Suppose that the sequence s converges to both x1 and x2 and
that x1 6= x2. choose a norm ν on V. We then have σ := ν(x1 − x2) > 0.
Applying Def.1 to N1 := x1 + σ

2 Ce(ν) ∈ Nhdx1(E) and N1 := x2 + σ
2 Ce(ν) ∈

Nhdx2(E) we can determine n1, n2 ∈ N such that s>(n1 + N) ⊂ N1 and
s>(n2 + N) ⊂ N2. Hence we have smax {n1,n2} ∈ N1 ∩ N2, which contradicts
the fact, easily verified, that N1 and N2 are disjoint.

If the sequence s converges to x then x is called the limit of s and we
write

x = lim s = lim
n→∞

sn

to express the assertion that the sequence s := (sn | n ∈ N
×) converges to

x.
Definition 2: We say that a point x ∈ E is a cluster point of a given

sequence s in E or that s clusters at x if for every N ∈ Nhdx(E) and every
n ∈ N

× we have s>(n+ N) ∩N 6= ∅.
If the sequence s converges to x, it is easily seen that x is the only cluster

point of s.
Let ν be any norm on V. In view of Prop.3 of Sect.53, one can replace

the phrase “for every N ∈ Nhdx(E)” in both Def.1 and Def.2 by “for every
ν-cell N centered at x.” We conclude that

x = lim s ⇐⇒ lim
n→∞

ν(sn − x) = 0. (55.1)
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In particular, if b := (bi | i ∈ I) is a basis of V with dual b∗ and if we apply
(55.1) to the box-norm ν := noBox(b) (see (51.16)), we obtain

x = lim s ⇐⇒ lim
n→∞

b∗
i (sn − x) = 0 for all i ∈ I. (55.2)

We denote by Conv(E) the set of all convergent sequences in E and we de-
fine the mapping lim E : Conv(E) → E by limE(s) = lim s. These notations
apply, of course, if E is replaced by V. Recall that the set EN×

of all sequences
in E has the natural structure of a flat space whose translation space is identi-
fied with the space VN

×

of all sequences in V (see Example 6 in Sect.33). The
spaces EN

×

and VN
×

are infinite-dimensional except when E is a singleton.
The action of VN

×

on EN
×

is given by (sn | n ∈ N
×) 7→ (sn + wn | n ∈ N

×)
when s ∈ EN

×

and w ∈ VN
×

. The following two results are not hard to
prove.

Proposition 2: Conv(E) is a flat in EN
×

and Conv(V) is its direction
space. The mapping lim E : Conv(E) → E is flat and its gradient is lim V :
Conv(V) → V.

Proposition 3: If ξ ∈ Conv(R) and w ∈ Conv(V) then
ξw := (ξnwn | n ∈ N

×) belongs to Conv(V) and

lim (ξw) = (lim ξ)(lim w). (55.3)

Recall that a subsequence of a given sequence s is a sequence of the form
s◦σ := (sσ(n) | n ∈ N

×), where σ : N
× → N

× is strictly isotone (see Sect.08).
The proofs of the following two results are essentially the same as the

proofs of the corresponding results in real analysis and will therefore be
omitted.

Proposition 4: Every subsequence of a given convergent sequence in
E converges to the same point in E as the given sequence. In other words,
x = lim s implies x = lim(s ◦ σ) for all strictly isotone σ : N

× → N
×.

Proposition 5: A point x is a cluster point of a given sequence if and
only if a subsequence of the given sequence converges to x.

We say that a sequence s in E is bounded if its range is a bounded
subset of E . The following theorem is a generalization of a basic theorem of
real analysis (see Sect.08).

Cluster Point Theorem: Every bounded sequence in a flat space has
at least one cluster point.

Proof: We proceed by induction over the dimension of the space. If
this dimension is zero, then the assertion is trivial. Assume then, that E is
a given flat space with dimE > 0 and that the assertion is valid for every
hyperplane in E . Choose a non-constant flat function a ∈ Flf(E). Since
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∇a 6= 0, we may and do choose a v ∈ V such that (∇a)v = 1. We consider
the hyperplane F := a<({0}).

Now let s be a bounded sequence in E . For each n ∈ N
×, we put

tn := sn − a(sn)v

so that a(tn) = a(sn) − a(sn)(∇a)v = 0, i.e. tn ∈ F . Therefore,
t := (tn | n ∈ N

×) is a sequence in F , and it is easily seen that it is bounded
in F . By the induction hypothesis, t has a cluster point in F and hence,
by Prop.5, there is a strictly isotone σ : N

× → N
× such that t ◦ σ con-

verges. Now, the sequence a ◦ s ◦ σ := (a(sσ(n)) | n ∈ N
×) is a real-valued

bounded sequence. Therefore, by the Cluster Point Theorem of real analysis
(see Sect.08) it has a convergent subsequence, i.e. there is a strictly isotone
τ : N

× → N
× such that the real-valued sequence a ◦ s ◦ σ ◦ τ converges. By

Prop.3, the sequence (a ◦ s ◦ σ ◦ τ)v := (a(s(σ◦τ)(n))v | n ∈ N
×) converges

in V. By Prop.4, the subsequence t ◦ (σ ◦ τ) of the convergent sequence
t ◦ σ converges in F and hence in E . Therefore, by Prop.2, the sequence
s ◦ (σ ◦ τ) = t ◦ (σ ◦ τ) + (a ◦ s ◦ (σ ◦ τ))v converges in E . But this is a
subsequence of s. In view of Prop.5, s has a cluster point.

The following result, a generalization of a basic fact of real analysis, en-
ables one often to test a sequence for convergence without having a candidate
for the purported limit.

Basic Convergence Criterion: For every sequence s in E the following
are equivalent:

(i) s converges.

(ii) For some norm ν on V and every ε ∈ P
× there is an m ∈ N

× such
that

ν(sn+r − sn) < ε for all n ∈ m+ N, r ∈ N. (55.4)

(iii) For every M ∈ Nhd0(V) there is an m ∈ N
× such that

s>(m+ N) − s>(m+ N) ⊂ M. (55.5)

Proof: (i) ⇒ (ii): Assume that the sequence s converges and put
x := lim s. Choose a norm ν on V. Let ε ∈ P

× be given. Using the
equivalence (55.1) we can determine m ∈ N

× such that ν(sk−x) < ε
2 for all

k ∈ m+ N. Given n ∈ m+ N and r ∈ N, we have n+ r ∈ m+ N and hence

ν(sn+r − sn) ≤ ν(sn+r − x) + ν(x− sn) <
ε

2
+
ε

2
= ε,
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which proves (55.4).
(ii) ⇒ (iii): Assume that (ii) holds and that M ∈ Nhd0(V) is given. By

Prop.3 of Sect.53 we can determine ε ∈ P
× such that εCe(ν) ⊂ M. By (ii)

we can determinem ∈ N such that (55.4) holds. Now, given p, q ∈ s>(m+N)
we have either p = sn, q = sn+r or q = sn, p = sn+r for suitable n ∈ m+ N,
r ∈ N and hence p−q = ±(sn+r−sn). It follows from (55.4) that ν(p−q) < ε
and hence p− q ∈ εCe(ν) ⊂ M. Since p, q ∈ s>(m+ N) were arbitrary, we
conclude that (55.5) holds.

(iii) ⇒ (i): Assume that (iii) holds. We choose a norming cell Bo and
determine m ∈ N such that (55.5) holds with M replaced by Bo. We then
have s>(m+ N) − sm ⊂ Bo and hence

Rng s = s>((m− 1)]) ∪ s>(m+ N) ⊂ s>((m− 1)]) ∪ (sm + Bo).

Since sm + Bo is bounded by Prop.3 of Sect.52 and since s>((m − 1)]) is
finite and hence bounded, it follows that Rng s is bounded. Therefore,
by the Cluster Point Theorem we may and do choose a cluster point x
of s. Now let N ∈ Nhdx(E) be given. We choose a norming cell B
included in N − x and determine n ∈ N

× such that (55.5) holds with
M replaced by 1

2B, so that s>(n+ N) − s>(n+ N) ⊂ 1
2B. By Def.2, we

can choose z ∈ s>(n+ N) ∩ (x+ 1
2B). We then have s>(n + N) − z ⊂

s>(n+ N) − s>(n+ N) ⊂ 1
2B and hence

s>(n+ N) ⊂ z +
1

2
B ⊂ (x+

1

2
B) +

1

2
B = x+ B ⊂ N .

Since N ∈ Nhdx(E) was arbitrary it follows that s converges to x.
Proposition 6: Let S be a subset of E and let x ∈ E. Then x ∈ CloS

if and only if x is the limit [a cluster point] of some sequence in S.
Proof: Assume that x ∈ CloS. We choose a norming cell B. Since, for

each n ∈ N
×, x+ 1

n
B ∈ Nhdx(E), it follows from (53.3) that (x+ 1

n
B)∩S 6= ∅

for all n ∈ N
×. Hence we may choose a sequence s := (sn | n ∈ N

×) in S
such that sn ∈ x + 1

n
B. It is clear that x is the limit (and hence a cluster

point) of s.
Assume now that s := (sn | n ∈ N

×) is a sequence in S and that x is a
cluster point (or even a limit) of s. Let N ∈ Nhdx(E) be given. In view of
Def.2, there is an n ∈ N

× such that sn ∈ N . Since sn ∈ S it follows that
S ∩ N 6= ∅. Since N ∈ Nhdx(E) was arbitrary, it follows from (53.3) that
x ∈ CloS.

We now assume that flat spaces E , E ′, with translation spaces V,V ′, and
subsets D ⊂ E , D′ ⊂ E ′ are given. We consider sequences of mappings from
D to D′, i.e. elements of (Map (D,D′))N×

.
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Definition 3: We say that a sequence σ = (σn | n ∈ N
×) in Map (D,D′)

converges to ϕ ∈ Map (D,D′) if

ϕ(x) = lim
n→∞

σn(x) for all x ∈ D.

We say that σ converges uniformly to ϕ if for every M′ ∈ Nhd0(V ′) there
is an n ∈ N

× such that

σm(x) ∈ ϕ(x) + M′ for all m ∈ n+ N, x ∈ D. (55.6)

We say that σ converges locally uniformly to ϕ if for every x ∈ D there
is N ∈ Nhdx(E) such that the sequence (σn|N | n ∈ N

×) in Map (N ∩D,D′)
converges uniformly to ϕ|N ∈ Map (N ∩D,D′).

It is evident that uniform convergence implies locally uniform conver-
gence, and that the latter implies convergence.

We write
ϕ = lim σ = lim

n→∞
σn

to express the assertion that the sequence σ converges to ϕ.
Proposition 7: Let ν ′ be a norm on V ′. Then the sequence σ in

Map (D,D′) converges uniformly to ϕ ∈ Map (D,D′) if and only if for every
ε ∈ P

× there is m ∈ N
× such that

ν ′ ◦ (σn − ϕ) < ε for all n ∈ m+ N (55.7)

where σn − ϕ ∈ Map (D,V ′) is the value-wise difference of σn and ϕ.
Proof: If M′ := εCe(ν ′), the defining condition (55.6) reduces to (55.7).

Hence the assertion is a consequence of Prop.3 of Sect.53.
The following criterion for uniform convergence is an analogue of the

Basic Convergence Criterion.
Proposition 8: Assume that D′ is a closed subset of E ′. Let ν ′ be

a norm on V ′. A sequence σ in Map (D,D′) converges uniformly to some
mapping in Map (D,D′) if and only if, for every ε ∈ P

×, there is m ∈ N
×

such that

ν ′ ◦ (σn+r − σn) < ε for all n ∈ m+ N, r ∈ N. (55.8)

Proof: Assume that σ converges uniformly to ϕ. Let ε ∈ P
× be given.

By Prop.7, we can determine m ∈ N
× such that ν ′ ◦ (σk − ϕ) < ε

2 for all
k ∈ m+ N. Given n ∈ m+ N and r ∈ N, we have n+ r ∈ m+ N and hence

ν ′ ◦ (σn+r − σn) ≤ ν ′ ◦ (σn+r − ϕ) + ν ′ ◦ (ϕ− σn) <
ε

2
+
ε

2
= ε,
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which proves (55.8).

Assume now that σ satisfies the condition. Then, for each x ∈ D, the se-
quence (σn(x) | n ∈ N

×) satisfies the condition (ii) of the Basic Convergence
Criterion and hence converges. By Prop.6, its limit belongs to D′ because
D′ is closed. Hence we can define ϕ : D → D′ by

ϕ(x) := lim
n→∞

σn(x) for all x ∈ D. (55.9)

Let ε ∈ P
× be given. Determine m ∈ N

× such that (55.8) holds with ε
replaced by ε

2 . Given n ∈ m+ N
× and x ∈ D, we then have

ν ′(σn+r(x) − σn(x)) <
ε

2
for all r ∈ N.

By (55.9) we can determine r ∈ N such that ν ′(ϕ(x) − σn+r(x)) <
ε
2 . We

conclude that

ν ′(ϕ(x) − σn(x)) ≤ ν ′(ϕ(x) − σn+r(x)) + ν ′(σn+r(x) − σn(x)) < ε.

Since n ∈ m+N
× and x ∈ D were arbitrary, it follows that (55.7) holds and

hence, by Prop.7, that σ converges uniformly.

Given a sequence w in Map (D,V ′) and indexed on N we define the
sum-sequence ssqw of w by

(ssqw)n :=
∑

k∈n[

wk for all n ∈ N (55.10)

(compare with (08.22)); it is again a sequence in Map (D,V ′) and indexed
on N. The following result is an easy consequence of Prop.8.

Proposition 9: Let w be a sequence in Map (D,V ′). Let ν ′ be a norm on
V ′ and let a be a sequence in P such that ν ′ ◦wn ≤ an for all n ∈ N and such
that the sum-sequence ssq a ∈ P

N of a converges. Then the sum-sequence
ssqw of w converges uniformly to a mapping in Map (D,V ′).

Proof: Let ε ∈ P
× be given. By condition (ii) of the Basic Convergence

Criterion, applied to the sum-sequence of a, we can determine m ∈ N such
that

∑

k∈(n+r)[\n[

ak = (ssq a)n+r − (ssq a)n < ε
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for all n ∈ m+ N and all r ∈ N. By (51.13) we have

ν ′ ◦ ((ssqw)n+r − (ssq w)n) = ν ′ ◦ (
∑

k∈(n+r)[\n[

wk)

≤
∑

k∈(n+r)[\n[

(ν ′ ◦wk)

≤
∑

k∈(n+r)[\n[

ak < ε

for all n ∈ m + N and all r ∈ N. Hence (55.8) holds with σ := ssqw and
Prop.8 gives the desired conclusion.

Notes 55

(1) The Notes (4), (5), and (6) to Sect.08 also apply to this section.

(2) The Basic Convergence Criterion is often called the “Cauchy Convergence Crite-
rion”. A sequence that satisfies this criterion is often called a “Cauchy sequence”
or a “fundamental sequence”.

(3) The test for uniform convergence of a sum-sequence implied by Prop.9 is often
called the “Weierstrass Comparison Test” or “Weierstrass M-Test”.

56 Continuity, Uniform Continuity

Let E be a flat space, D a subset of E , and x ∈ E . We use the notation

Nhdx(D) := {N ∩ D | N ∈ Nhdx(E)}. (56.1)

In the special case when D happens to be a flat, we see from (53.16) that
the notation (56.1) is consistent with the notation for the collection of all
neighborhoods of x in the flat space D. We call the members of Nhdx(D)
neighborhoods relative to D of x.

We say that a subset H of D is open relative to D if H is a neighbor-
hood relative to D of each point of H. If this is the case, we have H = D∩H†,
where

H† :=
⋃

{S ∈ Sub E | S is open, D ∩ S ⊂ H} (56.2)

is an open subset of E . Conversely, if H = D ∩ G for some open subset G of
E , then H is clearly open relative to D.
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If D is an open subset of E , then

Nhdx(D) = Nhdx(E) ∩ SubD.

Moreover, the subsets of D that are open relative to D are simply the open
subsets of D.

We now assume that flat spaces E , E ′ with translation spaces V,V ′ and
subsets D ⊂ E , D′ ⊂ E ′ are given.

Definition 1: We say that a given mapping ϕ : D → D′ is continuous
at a given x ∈ D if the pre-image under ϕ of every neighborhood of ϕ(x)
relative to D′ is a neighborhood of x relative to D, i.e. if

(ϕ<)>(Nhdϕ(x)(D′)) ⊂ Nhdx(D). (56.3)

We say that ϕ : D → D′ is continuous if it is continuous at every point
x ∈ D.

Using Prop.3 of Sect.53 we immediately obtain the following criterion.
Proposition 1: Let norms ν and ν ′ on V and V ′ be given. The mapping

ϕ : D → D′ is continuous at x ∈ D if and only if for every ε ∈ P
× there is

a δ ∈ P
× such that

(

ν(y − x) < δ =⇒ ν ′(ϕ(y) − ϕ(x)) < ε
)

for all y ∈ D. (56.4)

Proposition 2: The mapping ϕ : D → D′ is continuous at x ∈ D if
and only if for every sequence s := (sn | n ∈ N

×) in D that converges to x,
the sequence ϕ ◦ s = (ϕ(sn) | n ∈ N

×) converges to ϕ(x), i.e.

lim (ϕ ◦ s) = ϕ(lim s). (56.5)

Proof: Assume that ϕ is continuous at x. Let a sequence s in D that
converges to x and N ′ ∈ Nhdϕ(x)(E ′) be given. Then N ′∩D′ ∈ Nhdϕ(x)(D′)
and hence, since ϕ is continuous at x, ϕ<(N ′ ∩ D′) ∈ Nhdx(D). Hence
we may choose N ∈ Nhdx(E) such that ϕ>(N ∩ D) ⊂ N ′ ∩ D′ ⊂ N ′.
Since s converges to x and since Rng s ⊂ D there is n ∈ N

× such that
s>(n+ N) ⊂ N ∩D. It follows that

(ϕ ◦ s)>(n+ N) = ϕ>(s>(n+ N)) ⊂ N ′.

Since N ′ ∈ Nhdϕ(x)(E ′) was arbitrary, it follows that ϕ ◦ s converges to
ϕ(x).

Assume now that ϕ fails to be continuous at x. We choose a norming
cell B in V and a neighborhood N ′ of ϕ(x) in E ′ such that ϕ<(N ′ ∩ D′) is
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not a neighborhood of x relative to D. Since, for every n ∈ N
×, we have

D ∩ (x+ 1
n
B) ∈ Nhdx(D), it follows that ϕ>(D ∩ (x+ 1

n
B)) 6⊂ N ′ for every

n ∈ N
×. Hence we may choose a sequence s := (sn | n ∈ N

×) in D such
that sn ∈ x+ 1

n
B but (ϕ ◦ s)n = ϕ(sn) /∈ N ′ for all n ∈ N

×. It is clear that
x = lim s but that ϕ ◦ s cannot converge to ϕ(x).

Proposition 3: Assume that D and D′ are subsets of E and E ′, respec-
tively. Then ϕ : D → D′ is continuous if and only if the pre-image under ϕ
of every subset of D′ that is open relative to D′ is a subset of D that is open
relative to D.

Proof: Assume that ϕ is continuous. If H′ is a subset of D′ that is open
relative to D′ then H′ ∈ Nhdϕ(x)(D′) for every x ∈ ϕ<(H′) and hence, by
(56.3) ϕ<(H′) ∈ Nhdx(D) for every x ∈ ϕ<(H′). It follows that ϕ<(H′) is
open relative to D.

Assume now that the condition is satisfied. Let x ∈ D and N ′ ∈
Nhdϕ(x)(D′) be given. Using (56.1) we see that N ′ = M′ ∩ D′ for some
M′ ∈ Nhdϕ(x)(E ′). We then have ϕ(x) ∈ Int (M′), and, since Int (M′) is
an open subset of E ′, it follows that Int (M′) ∩ D′ is open relative to D′.
Therefore ϕ<(Int (M′)∩D′) is open relative to D and hence a neighborhood
relative to D of x. Since ϕ<(Int (M′) ∩ D) ⊂ ϕ<(M′ ∩ D) = ϕ<(N ′), it fol-
lows that ϕ<(N ′) ∈ Nhdx(D). Therefore, since x ∈ D and N ′ ∈ Nhdϕ(x)(D′)
were arbitrary, ϕ is continuous.

Definition 2: We say that a given mapping ϕ : D → D′ is uniformly
continuous if for every M′ ∈ Nhd0(V ′) there is a M ∈ Nhd0(V) such that
for all x, y ∈ D,

y − x ∈ M =⇒ ϕ(y) − ϕ(x) ∈ M′. (56.6)

Using Prop.3 of Sect.53 we obtain the following analogue of Prop.1:
Proposition 4: Let norms ν and ν ′ on V and V ′ be given. The mapping

ϕ : D → D′ is uniformly continuous if and only if for every ε ∈ P
× there is

a δ ∈ P
× such that

(

ν(y − x) < δ =⇒ ν ′(ϕ(y) − ϕ(x)) < ε
)

for all x, y ∈ D. (56.7)

Note that the criterion for uniform continuity of Prop.4 differs from the
criterion for continuity obtained from Prop.1 only by the placement of the
quantifier “for all x”, and hence that uniform continuity implies continuity.

Proposition 5: Every flat mapping is uniformly continuous.
Proof: Let α : E → E ′ be a flat mapping, so that

α(y) − α(x) = ∇α(y − x) for all x, y ∈ E .
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We choose norms ν and ν ′ on V and V ′. By (52.7) we have

ν ′(α(y) − α(x)) = ν ′(∇α(y − x)) ≤ ||∇α||ν,ν′ν(y − x)

for all x, y ∈ E . It follows that (56.7) holds when δ ∈ P
× is chosen such that

||∇α||ν,ν′δ < ε.

Composition Theorem for Continuity: Let D, D′, and D′′ be subsets
of flat spaces. If ϕ : D → D′ is continuous at x ∈ D and if ψ : D′ → D′′ is
continuous at ϕ(x) ∈ D′, then ψ ◦ ϕ : D → D′′ is continuous at x.

The composite of two continuous mappings is again continuous.

Proof: Since ϕ is continuous at x, (56.3) is valid. Since ψ is continuous
at ϕ(x), we also have

(ψ<)>(Nhdψ(ϕ(x))(D′′)) ⊂ Nhdϕ(x)(D′)

and hence

(ϕ<)>((ψ<)>(Nhd(ψ◦ϕ)(x)(D′′))) ⊂ (ϕ<)>(Nhdϕ(x)(D)).

Since ((ψ ◦ ϕ)<)> = (ϕ< ◦ ψ<)> = (ϕ<)> ◦ (ψ<)> (see (03.15)), we obtain,
using (56.3), the inclusion

((ψ ◦ ϕ)<)>(Nhd(ψ◦ϕ)(x)(D′′) ⊂ Nhdx(D),

which means that ψ ◦ ϕ is continuous at x.

Composition Theorem for Uniform Continuity: The composite of
two uniformly continuous mappings is again uniformly continuous.

Proof: Let E , E ′, E ′′ be flat spaces with translation spaces V,V ′,V ′′ and
D,D′,D′′ be subsets of E , E ′, E ′′, respectively. Assume that ϕ : D → D′ and
ψ : D′ → D′′ are uniformly continuous. Let M′′ ∈ Nhd0(V ′′) be given. The
uniform continuity of ψ implies that we can choose M′ ∈ Nhd0(V ′) such
that

y′ − x′ ∈ M′ =⇒ ψ(y′) − ψ(x′) ∈ M′′ (56.8)

for all x′, y′ ∈ D′. Since ϕ is uniformly continuous, we can find M ∈ Nhd0(V)
such that

y − x ∈ M =⇒ ϕ(x) − ϕ(y) ∈ M′ (56.9)

for all x, y ∈ D. Using (56.8) with the choice y′ := ϕ(y), x′ := ϕ(x) and
combining the result with (56.9), we obtain

y − x ∈ M =⇒ (ψ ◦ ϕ)(y) − (ψ ◦ ϕ)(x) ∈ M′′.
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Since M′′ ∈ Nhd0(V ′′) was arbitrary, we obtain the asserted uniform conti-
nuity of ψ ◦ ϕ.

Proposition 6: Let E be a flat space with translation space V, let S
be a non-empty subset of E and let ν be a norm on V. Then the function
d : E → P defined by

d(x) := inf{ν(x− z) | z ∈ S} (56.10)

is uniformly continuous. Moreover, CloS = d<({0}), and, for each δ ∈ P
×,

we have
S + δCe(ν) ⊂ d<([0, δ]). (56.11)

Proof: Let x, y ∈ E be given. By (56.10) and (N2) of Def.3 of Sect.51,
we have

d(x) ≤ ν(x− z) ≤ ν(x− y) + ν(y − z), for all z ∈ S.

Hence, using (56.10) again, we obtain

d(x) ≤ ν(x− y) + d(y).

This inequality and the one obtained from it by interchanging the roles of
x and y give

|d(x) − d(y)| ≤ ν(x− y).

Since x, y ∈ E were arbitrary, the asserted uniform continuity of d follows
from Prop.4.

Let x ∈ E and δ ∈ P
× be given. Then the following are evidently

equivalent:

(i) (x+ δCe(ν)) ∩ S 6= ∅,

(ii) q ∈ x+ δCe(ν) for some q ∈ S,

(iii) x ∈ S + δCe(ν),

(iv) ν(q − x) ≤ δ and some q ∈ S.

In view of (53.3) and Prop.3 of Sect.53, the equivalence (i) ⇔ (iv) shows
that x ∈ CloS if and only if for every δ ∈ P

× there is a q ∈ S such that
ν(q−x) ≤ δ. In view of (56.10), this condition is equivalent to d(x) = 0 and
hence we have CloS = d<({0}).

If (iv) holds then d(x) ≤ δ. Hence (iii) implies d(x) ≤ δ, which shows
that the inclusion (56.11) holds.
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In the case when E := V and S := {0}, the definition (56.10) gives d = ν
and Prop.6 yields

Proposition 7: Every norm on a linear space is uniformly continuous.

The value d(x) given by (56.10) is called the distance of the point x
from the set S, relative to the norm ν. If E is a genuine Euclidean space, if
ν is the magnitude | · |, and if S := {y}, then d(x) = dst(x, y), where dst is
the distance function of Sect.46.

We now assume that flat spaces E , E ′, with translation spaces V,V ′, and
subsets D ⊂ E and D′ ⊂ E ′ are given.

Theorem on Continuity of Uniform Limits: Let σ be a sequence
of continuous mappings in Map (D,D′) that converges locally uniformly to
ϕ ∈ Map (D,D′). Then ϕ is continuous.

Proof: Let x ∈ D and N ′ ∈ Nhdϕ(x)(E ′) be given. We choose a norming
cell B′ in V ′ such that ϕ(x) + 3B′ ⊂ N ′. In view of Def.3 of Sect.55, we can
determine N ∈ Nhdx(E) and n ∈ N

× such that

σn(y) − ϕ(y) ∈ B′ for all y ∈ N ∩ D. (56.12)

Since σn is continuous at x, in view of Def.1 we have M := σ<n (σn(x)+B′) ∈
Nhdx(D), so that

σn(y) − σn(x) ∈ B′ for all y ∈ M. (56.13)

Using (56.12) twice and (56.13) we obtain

ϕ(y) − ϕ(x) = (ϕ(y) − σn(y)) + (σn(y) − σn(x)) + (σn(x) − ϕ(x))

∈ (−B′) + B′ + B′ = 3B′

for all y ∈ N ∩D ∩M, i.e. ϕ(y) ∈ ϕ(x) + 3B′ ⊂ N ′ for all y ∈ N ∩D ∩M.
Since N ∩D ∩M ∈ Nhdx(D), this proves the continuity of ϕ at x.

57 Limits

Definition 1: Let D be a subset of a flat space E. We say that x ∈ E is an
accumulation point of D if x ∈ Clo (D \ {x}). We denote the set of all
accumulation points of D by AccD.

We have CloD = D ∪ AccD, i.e. every point in CloD either belongs to
D or is an accumulation point of D (or both). The points of D that are not
also accumulation points of D are called isolated points of D.
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Proposition 1: Let D,D′ be subsets of flat spaces E , E ′. Given
ϕ : D → D′ and x ∈ AccD, there is at most one x′ ∈ E ′ such that the
mapping ϕ : D ∪ {x} → D′ ∪ {x′} defined by

ϕ(z) :=

{

ϕ(z) if z ∈ D \ {x}
x′ if z = x

}

(57.1)

is continuous at x.
Proof: Suppose that x′1 ∈ E ′ and x′2 ∈ E ′, with x′1 6= x′2, both satisfy

the condition and that ϕ1 : D ∪ {x} → D′ ∪ {x′1}, ϕ2 : D ∪ {x} → D′ ∪ {x′2}
are defined according to (57.1). Choose a norm ν ′ on V ′. We then have σ :=
ν ′(x′1−x′2) > 0 and hence N ′

1∩N
′

2 = ∅ when N ′

1 := x′1 + σ
2 Ce(ν ′) ∈ Nhdx′1(E

′)

and N ′

2 := x′2 + σ
2 Ce(ν ′) ∈ Nhdx′2(E

′). Since ϕ1 and ϕ2 are both continuous
at x, in view of Def.1 of Sect.56 and (56.1) we can determine N1,N2 ∈
Nhdx(E) such that

ϕ1
<(N ′

1) = N1 ∩ (D ∪ {x}), ϕ2
<(N ′

2) = N2 ∩ (D ∪ {x}).

Since, by (57.1), both ϕ1 and ϕ2 agree with ϕ on D \ {x}, we conclude that

ϕ>(N1 ∩ N2 ∩ (D \ {x})) ⊂ N ′

1 ∩ N ′

2 = ∅

and hence (N1 ∩ N2) ∩ (D \ {x}) = ∅. Since N1 ∩N2 ∈ Nhdx(E), it follows
that x /∈ Clo (D \ {x}), which, by Def.1, shows that x /∈ AccD, contrary to
the assumption.

Definition 2: Let D,D′ be subsets of flat spaces E , E ′ and let x ∈ AccD.
We say that ϕ : D → D′ has the (by Prop.1 unique) limit x′ ∈ E ′ at x if the
mapping ϕ defined in Prop.1 is continuous at x′. We write

x′ = limxϕ = lim
z→x

ϕ(z) (57.2)

to express the assertion that ϕ has the limit x′ at x.
If we apply Prop.1 to the case when x ∈ D we obtain
Proposition 2: A given mapping ϕ : D → D′ is continuous at x ∈ D

if and only if either x is an isolated point of D, or else x ∈ AccD and
lim x ϕ = ϕ(x).

The following characterization of the limit is an immediate consequence
of Def.2.

Proposition 3: The mapping ϕ : D → D′ has the limit x′ at x ∈ AccD
if and only if for every N ′ ∈ Nhdx′(E ′), there is a N ∈ Nhdx(E) such that

ϕ>(N ∩ (D \ {x})) ⊂ N ′. (57.3)
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Using Prop.1 of Sect.56, we get still another characterization of the limit:

Proposition 4: Let norms ν and ν ′ on the translation spaces V and V ′

of E and E ′ be given. The mapping ϕ : D → D′ has the limit x′ at x ∈ AccD
if and only if for every ε ∈ P

× there is a δ ∈ P
× such that

(

0 < ν(y − x) < δ =⇒ ν ′(ϕ(y) − x′) < ε
)

for all y ∈ D. (57.4)

Proposition 5: If ϕ : D → D′ and x ∈ AccD are such that ϕ has a
limit at x, then

limxϕ ∈ Clo (Rngϕ) (57.5)

and hence lim x ϕ ∈ D′ or lim x ϕ ∈ AccD′ (or both).

Proof: Put x′ := lim x ϕ. If N ′ ∈ Nhdx′(E ′) is given, then (57.3) holds
for a suitable N ∈ Nhdx(E). Since x ∈ AccD we have N ∩ (D \ {x}) 6= ∅
and hence, by (57.3), N ′ ∩ Rngϕ 6= ∅. Since N ′ ∈ Nhdx(E ′) was arbitrary,
(57.5) follows.

The following result follows immediately from Def.2, the Composition
Theorem for Continuity of Sect.56, and Prop.5.

Proposition 6: Let D,D′,D′′ be subsets of flat spaces E , E ′, E ′′ and let
ϕ : D → D′ and ψ : D′ → D′′ be given. Assume, also, that ϕ has a limit at
a given point x ∈ AccD.

If limxϕ ∈ D′ and if ψ is continuous at limxϕ, then

limx(ψ ◦ ϕ) = ψ(limxϕ). (57.6)

If limxϕ /∈ D′ then limxϕ ∈ AccD′. If, in this case, ψ has a limit at
limxϕ, then

limx(ψ ◦ ϕ) = limlimxϕψ. (57.7)

Using Prop.2 of Sect.56, one immediately obtains the following result
from Def.2 and Prop.1.

Proposition 7: The mapping ϕ : D → D′ has the limit x′ at x ∈ AccD if
and only if, for every sequence s in D\{x} that converges to x, the sequence
ϕ ◦ s converges to x′, i.e.

lim (ϕ ◦ s) = lim(lim s)ϕ. (57.8)

58 Compactness

Recall that a collection G of subsets of a set E is said to cover a given set
K ∈ Sub E if K ⊂ ⋃G (see Sect.01).
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Definition 1: We say that a subset K of a flat space E is compact if
every collection of open subsets of E that covers K has a finite subcollection
that still covers K.

Proposition 1: Let D be a subset of a flat space E. A subset K of D
is compact if and only if every collection that covers K and consists of sets
open relative to D has a finite subcollection that still covers K.

Proof: Assume that K ⊂ D is compact. Let H be a collection that covers
K and consists of sets open relative to D. We then define the collection G

by G := {H† | H ∈ H}, where the open set H† is obtained from H by (56.2).
Since H = D∩H† ⊂ H†, it is clear that G is a cover of K consisting of open
sets. Since K is compact, we can determine a finite collection g ⊂ G that
covers K. Then h := {D ∩ G | G ∈ g} is a finite subcollection of H that still
covers K.

Now assume that K ⊂ D satisfies the covering condition. Let G be a
collection of open subsets of E that covers K. Then H := {D ∩ G | G ∈ G}
is a collection that covers K and consists of sets open relative to D. We
determine a finite collection h ⊂ H that still covers K. For each H ∈ h,
we choose G ∈ G such that H = D ∩ G. The subcollection g of all G ∈ G

obtained in this way is finite and still covers K. Since the collection G was
arbitrary, it follows that K is compact.

The importance of the concept of compactness becomes apparent in the
following two theorems.

Compact Image Theorem: The image of every compact set under
a continuous mapping is again a compact set. More precisely, if D,D′ are
subsets of flat spaces E , E ′ and if ϕ : D → D′ is continuous, then ϕ>(K) is
compact for every compact subset K of D.

Proof: Assume that K ∈ SubD is compact. Let H′ be a collection that
covers ϕ>(K) and consists of sets open relative to D′. By Prop.3 of Sect.56,
the collection H := {ϕ<(H′) | H′ ∈ H′} consists of sets open relative to D.
Also, we have

K ⊂ ϕ<(ϕ>(K)) ⊂ ϕ<(
⋃

H′) =
⋃

H,

showing that H covers K. By Prop.1, since K is compact, we can determine a
finite subcollection h of H that still covers K. For each H ∈ h we can choose
H′ ∈ H′ such that H = ϕ<(H′). The subcollection h′ of H′ obtained in this
way is finite and still covers ϕ>(K). Since the collection H′ was arbitrary, it
follows from Prop.1 that ϕ>(K) is compact.

Uniform Continuity Theorem: A continuous mapping with compact
domain is necessarily uniformly continuous. More precisely, if K,D′ are
subsets of flat spaces E , E ′, if ϕ : K → D′ is continuous, and if K is compact,
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then ϕ is uniformly continuous.

Proof: We denote the translation spaces of E , E ′ by V,V ′.

Let M′ ∈ Nhd0(V ′) be given. We choose a norming cell B′ in V ′ such
that B′ ⊂ M′. Then (ϕ(x) + 1

2B′)∩D′ ∈ Nhdϕ(x)(D′) for each x ∈ K. Since
ϕ is continuous we can choose, for each x ∈ K, a norming cell Bx in V such
that

ϕ>((x+ Bx) ∩ K) ⊂ ϕ(x) +
1

2
B′. (58.1)

The collection {x+ 1
2Bx | x ∈ K} consists of open sets and covers K. Since K

is compact, we may choose a finite subset k of K such that {p+ 1
2Bp | p ∈ k}

still covers K. By Prop. 2 of Sect. 51, B :=
⋂{1

2Bp | p ∈ k} is a norming
cell in V.

Now let x, y ∈ K be given. Since {p + 1
2Bp | p ∈ k} covers K, we may

choose p ∈ K such that x ∈ p+ 1
2Bp ⊂ p+ Bp. If y − x ∈ B, we have

y = x+ (y − x) ∈ p+
1

2
Bp + B ⊂ p+

1

2
Bp +

1

2
Bp = p+ Bp

and therefore x, y ∈ (p+ Bp) ∩ K. Hence, if we use (58.1) with x replaced
by p, we obtain ϕ(x), ϕ(y) ∈ ϕ(p) + 1

2B′ and therefore

ϕ(y) − ϕ(x) ∈ (ϕ(p) +
1

2
B′) − (ϕ(p) +

1

2
B′) = B′.

We have proved that, for all x, y ∈ K, y − x ∈ B implies ϕ(y) − ϕ(x) ∈
B′ ⊂ M′. Since M′ ∈ Nhd0(V ′) was arbitrary and since B ∈ Nhd0(V) we
conclude, according to Def.2 of Sect.56, that ϕ is uniformly continuous.

The condition of Def.2 is usually very hard to verify for a given set K.
The following theorem gives an easy criterion.

Compactness Theorem: A subset of a flat space is compact if and
only if it is closed and bounded.

Before proving this theorem we give some preliminary results, which are
often useful in their own right.

Proposition 2: Let K be a closed and bounded subset of E and let G be
a collection of open sets of E that covers K. Given a norming cell B in the
translation space V of E, one can find a number σ ∈ P

× with the following
property: For every x ∈ K there is a G ∈ G such that x+ σB ⊂ G.

Proof: Assume that the conclusion is false. We can then choose, for
each n ∈ N

×, a point pn ∈ K such that

pn +
1

n
B 6⊂ G for all G ∈ G. (58.2)
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Since K and hence the sequence p := (pn | n ∈ N
×) in K is bounded, we

can apply the Cluster Point Theorem and choose a cluster point of p, say z.
Since K is closed, we can apply Prop.6 of Sect.55 to conclude that z ∈ K.
Since G is a cover of K, we may choose G◦ ∈ G such that z ∈ G◦. Since G◦ is
open and hence G◦ ∈ Nhdz(E), we may choose ε ∈ P

× such that z+εB ⊂ G◦.
Since z is a cluster point of p, we may choose m ∈ N

× with m ≥ 2
ε

such that
pm ∈ z + ε

2B. Since ( ε2 + 1
m

) ≤ ε, we obtain

pm +
1

m
B ⊂ z +

ε

2
B +

1

m
B ⊂ z + εB ⊂ G◦,

which contradicts (58.2).

Proposition 3: Let K be a subset of a flat space E with translation space
V. Then the following are equivalent:

(i) K is bounded.

(ii) For every norming cell B there is a finite subset k of K such that
K ⊂ k + B.

(iii) Every sequence in K has a cluster point.

Proof: (i) ⇒ (iii): This follows from the Cluster Point Theorem.

(iii) ⇒ (ii): Assume that (ii) is false. We can then choose a norming
cell B such that

K 6⊂ k + B for every k ∈ FinK. (58.3)

We now define a sequence p := (pn | n ∈ N
×) in K by recursive choice as fol-

lows: Suppose p|(n−1)] has been determined for a given n ∈ N
×. (Of course,

when n = 1, since 0] = ∅, p|(n−1)] is the empty list.) Since Rng (p|(n−1)])
is a finite subset of K, we have, by (58.3), K 6⊂ Rng (p|(n−1)]) + B. Hence
we may choose pn ∈ K \ (Rng (p|(n−1)]) + B), which means that pn ∈ K but

pn /∈ pm + B for all m ∈ (n − 1)]. It follows that pn − pm /∈ B whenever
n,m ∈ N

× and n > m, which would not be possible if p had a cluster point.
We conclude that (iii) is false.

(ii) ⇒ (i): If (ii) holds then k+B, being the union of the finite collection
{p + B | p ∈ k} of bounded sets, is bounded. Hence K, being a subset of
k + B is also bounded.

Proof of Compactness Theorem: Assume that K is a compact subset
of a given flat space E with translation space V. Let B be a norming cell in
V. The collection {x+B | x ∈ K} consists of open sets and covers K. Hence
we can choose a finite subset k of K such that K ⊂ ⋃{p+B | p ∈ k} = k+B.
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By (ii) ⇒ (i) of Prop.3 it follows that K is bounded. To prove that K is
closed, let z ∈ E \K be given. Then {E \ (z+ ρB | ρ ∈ P

×} is a collection of
open sets whose union is E \ {z} and which, therefore, covers K ⊂ E \ {z}.
Since K is compact, we may choose a non-empty finite subset F of P

× such
that

K ⊂
⋃

ρ∈F

{E \ (z + ρB)} = E \ (z + (minF )B).

It follows that (z + (minF )B) ∩ K = ∅. Since z + (minF )B ∈ Nhdz(E), we
conclude that z /∈ CloK. Since z ∈ E \ K was arbitrary, it follows that
E \ K ⊂ E \ CloK and hence that K is closed.

Assume that K is closed and bounded. Let a norming cell B and a
collection G of open subsets of E that covers K be given. We determine
σ ∈ P

× according to Prop.2. In view of Prop.3, (i) ⇒ (ii), we may choose a
finite subset k of K such that K ⊂ k + σB. By Prop.2, we may choose, for
each p ∈ k, a set Gp ∈ G such that p+ σB ⊂ Gp. We then have

K ⊂ k + σB =
⋃

p∈k

(p+ σB) ⊂
⋃

p∈k

Gp,

which means that {Gp |p ∈ k} is a finite subcollection of G that covers K.
Since G was arbitrary, it follows that K is compact.

The following is an immediate consequence of the Compactness Theorem
and Prop.15 of Sect.53.

Proposition 4: If K1 and K2 are compact subsets of flat spaces E1 and
E2, respectively, then K1 ×K2 is a compact subset of E1 × E2.

Proposition 5: If K is a compact subset of a flat space E, and B a
compact subset of the translation space V of E, then K + B is a compact
subset of E.

Proof: We recall that the mapping ((x,v) 7→ x+v) : E ×V → E is flat
(Example 7 in Sect.33) and hence, by Prop.5 of Sect.56, continuous. Since
K+B is the image of K×B under this mapping, and since K×B is compact
by Prop.4, the desired result follows from the Compact Image Theorem.

Since every non-empty closed and bounded subset of R has a maximum
and a minimum, we have the following direct consequence of the Compact-
ness Theorem and the Compact Image Theorem.

Theorem on Attainment of Extrema: A continuous real-valued
function whose domain is non-empty, closed, and bounded, attains a max-
imum and a minimum. More precisely, if K is a non-empty closed and
bounded subset of a flat space and if f : K → R is continuous, then there
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are points z and y in K such that

f(z) ≤ f(x) ≤ f(y) for all x ∈ K.

Proposition 6: Let D be an open subset of a flat space E with translation
space V. For every compact subset K of D and every norm ν on V, there is
a δ ∈ P

× such that
K + δCe(ν) ⊂ D. (58.4)

The set K + δCe(ν) is compact.
Proof: Let a compact subset K of D and a norm ν on V be given.

If D = E then (58.4) is trivial. We assume now that D 6= E and put
S := E \ D. We define d : E → P as in Prop.6 of Sect.56. Since S is closed
by Prop.5 of Sect.53 it follows from Prop.6 of Sect.56 that S = d<({0}) and
hence d>(K) ⊂ d>(D) ⊂ P

×. Since d|K is continuous, by the Theorem on
Attainment of Extrema it attains a minimum σ ∈ P

×. We choose δ ∈ ]0, σ[.
(δ := 1

2σ would do.) Then d>(K)∩[ 0, δ] = ∅ and hence K∩d<([0, δ]) = ∅. By
(56.11), it follows that K∩(S+δCe(ν)) = ∅ and hence ∅ = (K+δCe(ν))∩S =
(K + δCe(ν)) ∩ (E \ D), which is equivalent to (58.4).

The Compactness of K + δCe(ν) is a consequence of Prop.5.
We now assume that D and D′ are subsets of flat spaces E and E ′ with

translation spaces V and V ′, respectively. Recall Def.3 of Sect.55.
Proposition 7: Let σ be a sequence in Map (D,D′) that converges lo-

cally uniformly to ϕ. Then, for every compact subset K of D, the sequence
(σn |K | n ∈ N

×) converges uniformly to ϕ|K.
Proof: Let K be a non-empty compact subset of D. For every

q ∈ K we can choose an open neighborhood Gq of q such that the sequence
(σn|Gq

| n ∈ N
×) converges uniformly. Then {Gq | q ∈ K} is a collection of

open sets that covers K. Since K is compact, we can choose a finite subset k

of K such that {Gq | q ∈ k} still covers K. Now let M′ ∈ Nhd0(V ′) be given.
For every q ∈ k we can then determine rq ∈ N

× such that

σm(x) ∈ ϕ(x) + M′ for all m ∈ rq + N, x ∈ Gq ∩ D. (58.5)

We note that k 6= ∅ and put n := max {rq | q ∈ k}. Since m ∈ n+ N implies
m ∈ rq + N for all q ∈ k, it follows from (58.5) that σm(x) ∈ ϕ(x) + M′ for
all m ∈ n+N and all x ∈ K. Since M′ ∈ Nhd0(V ′) was arbitrary, it follows
that {σn |K | n ∈ N

×} converges uniformly.
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Notes 58

(1) What we call the “Compactness Theorem” is often called the “Heine-Borel Theo-
rem”, the “Borel-Lebesgue Theorem”, or the “Heine-Borel-Lebesgue Theorem”.

(2) Prop.2 is sometimes called “Lebesgue’s Covering Lemma” and a number σ ∈ P
×

that has the property mentioned in Prop.2 is often called a “Lebesgue number” of
a given covering collection G.

59 Problems for Chapter 5

(1) Let S be a bounded subset of a linear space V such that LspS = V.
Show that

B := IntCxh(S ∪ (−S)) (P5.1)

is a norming cell in V.

(2) Show that the boundary of a box in a flat space E of dimension n is
the union of a collection of 2n closures of boxes in hyperplanes in E .

(3) Let E be a flat space and let q ∈ E be given. Show that a subset S
of E is bounded if and only if, for every N ∈ Nhd0(V) one can find
σ ∈ P

× such that σ(S − q) ⊂ N .

(4) Let S be a non-empty subset of a flat space E . Let ν be a norm on
V := E − E . Prove that, for every δ ∈ P

×,

diamν(S + δCe(ν)) = diamν(S + δCe(ν)) = diamν(S) + 2δ, (P5.2)

where Ce(ν) and Ce(ν) are given by (51.8) and (51.9), and where the
diameter diamν is defined by (52.1).

(5) Let V and V ′ be genuine inner-product spaces with 0 < dimV ≤ dimV ′.
Show that

||R|| = 1 and |R| =
√

dimV

for all R ∈ Orth(V,V ′).

(6) Let V be a linear space.
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(a) Prove: If f := (fi | i ∈ I) is a finite family in V and

C := Cxh((Rng f) ∪ (−Rng f)), (P5.3)

then, for all v ∈ Rng lncf ,

inf{t ∈ P |v ∈ tC} = inf

{

∑

i∈I
|λi| |λ ∈ lnc<

f
({v})

}

(P5.4)

(see Sect.37).

(b) Let β := (βi | i ∈ I) be a finite family in (V∗)× that spans V∗.
Show that ν : V → P, defined by

ν(v) := max{|βiv| | i ∈ I} (P5.5)

is a norm on V and that the corresponding norming cell is given
by

Ce(ν) =
⋂

i∈I
β<i ( ]−1, 1[ ). (P5.6)

(c) Let the norm ν on V be defined as in Part (b). Show that its
dual ν∗ (see Sect.52) is given by

ν∗(λ) = inf

{

∑

i∈I
|αi|

∣

∣

∣

∣

α ∈ lncβ
<({λ})

}

(P5.7)

for all λ ∈ V∗. Also, show that ν∗ = noB∗ when

B∗ := Int Cxh((Rng β) ∪ (−Rng β)). (P5.8)

(Hint: Use Part (a).)

(d) Using Part (c), show that (52.18) holds when b is a basis of V
and that

Dmd(b) = Int Cxh((Rngb) ∪ (−Rngb)). (P5.9)

(7) Let V and W be linear spaces and let ν and ω be norms on V and W ,
respectively.

(a) Show that
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||w ⊗ λ||ν,ω = ω(w)ν∗(λ) (P5.10)

for all λ ∈ V∗,w ∈ W .

(b) Let L ∈ Lin(V,W) and bases b := (bi | i ∈ I) and c := (cj | j ∈ J)
of V and W , respectively, be given. Let M ∈ R

J×I be the matrix
of L relative to b and c (see Sect.16). Show that

||L||ν,ω ≤ αβ
∑

(j,i)∈J×I

|Mj,i|, (P5.11)

where

α := max{ν∗(b∗
i ) | i ∈ I}, β := max(ω(cj) | j ∈ J). (P5.12)

(8) Let V and W be linear spaces and let L ∈ Lin(V,W) and bases b and
c be given as in Part (b) of Problem 7.

(a) Prove that

‖L‖ν,ω = max

{

∑

j∈J
|Mj,i|

∣

∣

∣

∣

∣

i ∈ I
}

(P5.13)

when ν := noDmd(b), ω := noDmd(c).

(b) Prove that

||L||ν,ω = max

{

∑

i∈I
|Mj,i|

∣

∣

∣

∣

j ∈ J
}

(P5.14)

when ν := noBox(b), ω := noBox(c). (Hint: Use Part (a) and
Prop.7 of Sect.52.)

(9) Let E be a flat space and let (x, y, z) be a flatly independent triple
of points in E . Also, assume that ρ, σ and τ are sequences in R and
indexed on N

× such that

ρn + σn + τn = 1 for all n ∈ N
×, (P5.15)

so that

sn := ρnx+ σny + τnz (P5.16)
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is meaningful for each n ∈ N
× as a symbolic sum (see (35.5)).

(a) Show that the sequence s := (sn |n ∈ N
×) converges if and only

if both ρ and σ converge.

(b) Show: If s has a cluster point, so do ρ, σ and τ .

(c) Give an example of sequences ρ, σ, τ satisfying (P5.15) such that
ρ, σ, τ all have cluster points but the sequence s, as defined by
(P5.16), has no cluster point.

(10) Let a flat space E , a point q ∈ E , and a norm ν on V := E − E be given.
Consider the ν-cell C := q + Ce(ν) with closure C := q + Ce(ν) (see
Def.4 of Sect.51). For each n ∈ N define fn : C → R by

fn(x) = (ν(x− q))n for all x ∈ C. (P5.17)

(a) Show that the sequence f := (fn |n ∈ N) in Map (C,R) converges
and find its limit.

(b) Show that the sequence f does not converge locally uniformly.

(c) Show that the sequence (fn|C | n ∈ N) converges locally uniformly
but not uniformly.

(11) Let S be a subset of a flat space E and let C be a closed subset of
V := E − E .

(a) Show that S + C is closed if S is compact.

(b) Give a counterexample which shows that S+C need not be closed
if S is closed.

(12) Let K be a compact subset of a flat space E .

(a) Let (Gn | n ∈ N
×) be a sequence in SubK such that Gn is open

relative to K for each n ∈ N
×,

Gn+1 ⊃ Gn for all n ∈ N
×,

and
⋃

(Gn | n ∈ N
×) = K. Show that there is m ∈ N

× such that
K = Gm.

(b) Let f := (fn | n ∈ N
×) be a sequence in Map (K,R) such that fn

is continuous for each n ∈ N
×,
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fn+1 ≤ fn (value-wise) for all n ∈ N
×,

and f converges (value-wise) to a continuous function
g ∈ Map (K,R). Prove that f converges uniformly to g. (Hint:
Apply Part (a) to the case when

Gn := (fn − g)<([0, ε[ ), where ε ∈ P
×.)

Note: The result of Part (b) is usually called “Dini’s Theorem”.

(13) Let E and E ′ be flat spaces and let ϕ : E → E ′ be a continuous
mapping. Show: If the pre-image under ϕ of every bounded subset of
E ′ is bounded, then Rngϕ is a closed subset of E ′. (Hint: Use Prop.6
of Sect.55, the Cluster Point Theorem, and Prop.2 of Sect.56.)


